
SOFTWARE

MACHINE CODE AND

ASSEMBLY LANGUAGE

MOHAWK DATA SCIENCES CORP.

SYSTEM 2400

MACHINE CODE AND

ASSEMBLY LANGUAGE

(Level 03, Revision 03 Only)

SECOND EDITION

CORPCIRATE . H~ADG.U/\R·T::::RS . UTICA, N~VV YORK 13503

"Trademark of Mohawk Data SCiences Coro., Utica, N.V .. Mohawk Data Sciences-Canada, Ltd. Registered User ..

Form No.1 tJ4o-'J774';; 'Mohawk Data Sciences Corp. Printed In U.S.A.

REVISION PAGE

EDITION/ NUMBER OF
FORM NUMBER ADDENDUM SHEETS SOFTWARE LEVEL

NUMBER AFFECTED AND DATE SUPPORTED

EDITION 1 --------- 1"1-1948-1271 Unknown
.\DDEi~ DUr·1 1 --------- n-1948-0372 Unknown
ADDEi~DUM 2 --------- M-1948-1072 Unknown
ADDGJDUM 3 --------- M-1948-0173 03.00
ADDENDUr~ 4 --------- ~1-1948-06 7 3 03.00
ADDE:~DUM 5 6 ~1-1948-1173 03.02
EDITION 2 --------- pr'1-1948-0 774 03.03

REASON FOR CURRENT ADDENDUM/EDITION:

This edition combines edition 1 of this manual and edition 1 of the
2408 Instruction Set, Form No. PM-2571.

: Shanqe ~ar'; ndicate the latest additlr)[I, and cor r9C': ,(j(") . . ~n ,lc;rertsk f·\ .jcccn~C3"'I,ng 'he ';~;d(qt' ')ar
, il(l1C(jtf~S a neietlon

1

I
-1

TABLE OF CONTENTS

Fon'Jard
Abbreviations And Conventions .. .
Summary Of Instructions By Function.
Summary Of Instructions By Octal Sequence.

SECTION I. INTRODUCTION

Functions and Ope~~1ions
Format for Instruction Descriptions ..
Format for Instructions ..
Condition Designators.
Binary Number Signs
Decimal Number Signs .. .
Functions and Operations
Data Move
Branching.
Compa re. .
Tes t . . .
Input/Output.
General Purpose ..
Logical
Binary Ari thmeti c. '.
Decimal Arithmetic
Sequential Editing
Interrupt.
External Execute Instruction Set.
Multiply/Divide Instructions
Instruction Expansion Modules (General) ..

Channel Assignments ..
Information Transfer ...

Instruction ~xpansion ~odu1e ~ (G2nera1)
Program ':a 11.

Instruc:ion EXDansio1 ~oaule

PAGE

III
V

VI
XIII

1-1

1-1

1-1

1-1

1-2

1-3

1-4

1-6
1-18

1-46

1-51

1-59

1-71

1-83

1-88

1-93

1-98

1-116

1-125

1-126

1-144

1-145

1-145

1-147

1-149

1-153

1-161

SECTION II.

APPENDIX A.

APPENDI X B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

TABLE Oc co~n~;~~:,
/COI1:'(·

SYSTEr' 2400 ASSE~1SLER L,llJJGUAGE
Introductic.:
Coding Instructions.
Symbolic Names ..
Basic Instructions
Linkage Macros ..
Operand Formats ...
Permissab1e Operands
Definition of Constants.
Assembler Directives
Editing Source Input ..
Relocatabi1ity
Error Flags In Listings
Modes of Operation
Operating The Assembler
Device Configuration.
Object Code Map

INTERRUPT PROGRAMMING
Software Interrupt Linkage
Worker/Executive State ..
Enable/Disable Interrupts
Set/Clear Interrupt Lockout
Save Condition Designators & Tally Counter.
Class 1 - Monitor Interrupts
Class 2 - Service Interrupts
Class 3 - Special Interrupts

PROGRAMMING ACTIVE RECORDS

EBEDIC CODE

TALLY COUNTER

INSTRUCTION EXECUTION TIMES & PROCESSOR MODELS

I I

PAGE

· 2-1

2-2

2-3

· 2-4
. . . 2-10

· 2-11
· 2-11
· 2-12

· . 2-17
· 2-30

· 2-31

· 2-32
2-32

· . 2-34

· 2-36
· . 2-37

· A-l

· A-3
. .. A-3

A-3
A-4
A-5
A-6
A-8

APPENDIX F.

APPENDI X G.

APPENDIX H.

Fi gure 1 -1 .
Fi gure 1-2.
Fi gure 1-3.
Fi gure 2-1 .
Figure 2-2.
Figure A-l.
Fi gure A-2.
Fi gure A-3.
Fi gure A-4.
Fi gure A-5.
~i gur:~ G-l

~igure G-2.
=-i gure S-3.

ri'~Jre 3-4.
- ~ ;~~r"'~ r -J-J.

TABLE OF CONTENTS
(cont'd)

OCTAL NOTATION RULES
Octal/Decimal Conversi~n Procedure
Tri-Octal Notation

SNAP P ADAPTER
Capture P. .
Interrupt

UTILITY ADAPTER
General
Command Codes
Logical Set Feature
CRC Set
Load Utility Adapter
Command Byte Modifiers (X)

Real Time Clock

LIST OF ILLUSTRATIONS

SYSTEM 2400 Processor Instruction Expansion Modules ..
Instruction Expansion Modules - Channel Configuration.
I n forma t i on Trans fer .
Use of SDAT and lOT
Object Code Map.
2408 Processor - Program Control Block.
Tally Counter. •.
Monitor Interrupt Processing Flow Diagram (Example)
Service Interrupt Processing Flow Diagram (Example)
Special Interrupt Processing Flow Diagram (Example)
ors ~ ITEr~ 2, -; l1r'i0e Bytes
OTS, ITEr~ 2,' Byte 2 Bit Assignments
8TS, ITEM 2, Byte 3 Bit Assignmerts
INS, ITEM 2 Bytes
: : ; s, ~ -:-E ~~ 2, 3 j t e .3 8 itA s s i 9 n me n t s

I I I

PAGE

· F-l
· F-3

· . G-l
· • G-2

· . H-l

· H-2

· H-3
· H-5

• . H-6

• • H-6

· H-6

• • 1 -144
· 1-145
· 1 -145
· 2-29

· 2-32
· A-2

A-5

· A-7
• • A-9

· . A-ll
G-3

· . G-3
G-4

G-4
G-5

Fi gure G-6.
Fi gure G-7.
Fi gure G-8.
Figure G-9.
Fi gure G-1O.

Tabl e 2-1

Table 2-2

Table 2-3
Table 2-4
Table 2-5
Table E-l
Table E-2
Table E-3
Table F-l
Table F-2

LI ST OF I LLUSTRAT IONS
(cont1d)

INS, ITEM 2, Byte 4 Bit Assignments ..
INS, ITErvl 2, Byt:: 5 Bi t f\ss i gnments. .
Interrupt Processing Sequence
A Sample Restore Designators Routine.
Quick-Reference Data Sheet ...•..

LIST OF TABLES

Basic Instructions••.•.• 0

Summa ry of Operands•.
Assembler Syntax Error Flags . .• 0 •

Use of Lights and Switches in Assembler
Assembler Configurations ..
Formular for Execution Times of 501A Processor ..
Formular for Execution Times of 502 Processors.
Instruction Set and Processor Model ..
Binary/Octal Equivalents
De c i ma 1 /0 c ta 1 Co n ve rs ion Tab' e . . .

IV

Page
G-5

· G-6

· G-7
· G-8
· G-9

o 2-4
. • 2 -1 ,

· 2-33
~ 2-35
e 2-36

· E-2
· E-6
· E-10
· F-l

. . F-2

FOREWORD

This manual describes the instruction roepertoire, format, and detailed infor
mation for programming the SYSTEM 2400 Processors in r'1achine Code and SYSTEt,1 2400
Assembly Language. For conventional purposes, the user should always program

SYSTEM 2400 applications in Mohawk Data Language (MOL) or RPG II, both of which
are fully supported by MOS.

This manual provides in-depth infonnation to the experienced user regarding
the machine-code instruction repertoire for the SYSTEM 2400 Processors. The
Softwa re Man ua 1 SYSTEN 2400 Processor Programming in Uachine Code (Fo rm I~o. t~-2269)

;s prerequisite reading to this document. For the effective use of this manual,
familiarity with the following publications will also be particularly helpful:

SYSTEl1 2400 Processor Operator Control Panels Hardware Manual
(Fo rm r~o. t~-2268)

2406 Systems Console Hardware Manual (Form r~o. M-1940)

The reader should be familiar with compatible data processing equipments and
associated programming systems.

Users that elect to include the 2406 Systems Console within their system and to
program applications without using MOL or RPG II can function satisfactorily with
the set of machine-l~vel instructions described herein. This document contains the
instruction formats and detailed steps for their use within the following function
al categories:

• Data move
• Branching

• Compa re

• Test
• Input/output
• General Purpose

• Logical
• Binary Arithmetic

• Decimal Arithmetic
• Sequential Editing

v

• Interrupt
• External Execute
• Instruction Expansion Module A
• Instruction Expansion Module B

As a general rule, instructions preceded by an asterisk (*) may only be used
with a 502 Processor. While the instructions not preceded by an asterisk may be
used with a 501 or 502 Processor. For detailed information on which processor
can execute each instructions, see Appendix E.

VI

ABBREVIATIOrJS AND CONVEfJTIONS

The following abbreviations and conventions are used when describing the
instruction format and presenting typical examples:

AR
B

I

f

lOT
L.

1

Lf
Ls
LSD

M

t~SB

t~SBY

n

o

OC

OPl-4
PBIAS

PCB
Pa
Pb
R

s

SDAT
z
=

>

<

>

<

+

Act i ve Reco rd
Buffer

Item
Denotes an lIoff" condition

Item Descriptor Table
Literal to be ignored

Fill 1 i te ra 1

Sentinel literal
Least significant digit

r·1as k
Most significant bit
Most significant byte
r~u 11

Denotes an "on" condition
Operation Code
Operands 1 through 4

Program Bi as
Program Control Block

Pointer after an execution

Pointer before an execution.
Record
Space

Storage Descriptor Area Table
Zero
Equals

f~ot equa 1 to
Grea te r than

Less Than

Equal to or Greater Than
Equal to or Less Than

Pl us
r~; nus

VI I

Op Code Page
Octal Mnem. No.

000 M 1-7

001 MR 1~8

003 MED 1-9

004 MF 1-10

005 MRF 1-11
l.JJ
::::-
0
:E:

c:(006 MJ 1-12
l-

~

007 MRJ 1-13

050 MPK 1-14

052 MUP 1-15

140 TRL. 1-16

141 ML 1-17

020 NOP 1-19

021 GGT 1-20

022 GLT 1-21

023 GNE 1:..22

024 GE 1-23
c..!J
z
t-4 025 GNL 1-24 ::r:: u
z
~ 026 GNG 1-25
co

027 G 1-26

030 GO 1-27

031 GS 1-28

* 502 Mode only

SUMr~ARY OF IIISTRUCTIONS
BY FUNCTION

Instruction -OC

Mdve Item, Left- . 000
Align, No Fill

Move Item, Right- 001
Align, No Fill

Move Item, Edit 003

Move Item, Left.:. 004
Al ign, Fill

Move Item, Right- 005
Align, Fill

Move Item, Left- 006
Justify, Fill

Move Item, Right- 007
Justify, Fill

Move, Pack 050

Move, Unpack 052

Trans 1 a te Code 140

Move Literal 141

No Operation 020

GOTO Greater Than 021

GOTO Less Than 022

GOTO Not Equal 023

GOTO Equal 024

GOTO Not Less Than 025

GOTO Not Grea ter 026
Than

GO TO Unconditionally 027

GOTO On Designators 030

GOTO On Switches 031

VIII

Fonnat
OP1 OP2 OP3 OP4

AR/I AR/I

AR/I AR/I

AR/I AR/I ~R/ I L

AR/I AR/I L

AR/I AR/I L

AR/I AR/I L

AR/I AR/I L

AR/I AR/I

AR/I AR/I

AR/I AR/I AR/I

AR/I L

address
I

address
I

address
I

address
I-

address
I

address
I

address

I
address

M address ,
M address

I

Op Code Page
Octal Mnem. No.

061 GBG 1-29

062 GBL 1-30

063 GBN 1-31

064 GBZ 1-32

065 GGBE 1-33

066 GLBE 1-34

071 GOG 1-35

C!J
z
~ 072 GDL 1-36 :x::
u
z
<X:
0:::
co 073 GDN 1-37

074' GDZ 1-38

075 GGDE 1-39

076 GLDE 1-40

17D GCT 1-41

172 GTB 1-42

173 GRT 1-44

176 GSB 1-45

044 CB 1-47

LLJ 046 CD 1-48
0:::
c:c
a... 142 CAN . 1-49 ~
0
u

144 CL 1-50

* 502 Mode only

SUMMARY OF HISTRUCTIONS

BY FUNCTION

(continued)

Instruction OC

GOTO Binary Greater 061
Than

GOTO Binary Less Than 062

GOTO Binary Non-Zero 063

GOTO Bi fld r'y Zero 064

GOTO Binary ~ Zero 065

GOlD S i nary ~ Zero 066

GOTO Decimal Greater 071
Than

GOlD Oecimal Less 072
Than

GOTO Decimal Non-Zero 073

GOTO Decimal Zero 074

GOTO Decimal > Zero 075 -
GOTO Decimal < Zero 076

GOTO On Count 170

GOrD Table 172
(Indirect Branch)

GOTD Return (Branch) 173

GOTO'Subroutine 176
(Branch)

Compa re B ina ry 044

Compa re Decimal 046

Compare Alphanumerics 142

Compare Literal 144

IX

Fonnat
OP1 OP2 OP3 OP4

AR/I .I address

I
AR/I address

I
AR/I address

I
AR/I address

I
AR/I address

I
AR/I address

I
AR/I aMdress

I
AR/I address

I
ARII address

I
AR/I address

I
AR/I address

I
ARII address

I
AR/I address

AR/I AR/I L

B

B address

AR/I AR/I

ARII AR/I

ARII AR/I

AR/I L

Op Code Page
Octal Mnem. No.

040 TBS 1-52

042 TDS 1-53

t- 150 TI 1-54 (/)

w
t-

151 TL 1-55

152 TM 1-56

*153 TIM 1-57

100 INS 1-60

104 EF 1-61

105 OTS 1-62

*106 EFS 1-63

107 GA 1-64

110 STC 1-65
t-
:::>
0..
t- *111 STR 1-66 :::>
0

" t- *112 INR 1-67 :::>
0..
z:
t-t

114 IN 1-68

115 OUT 1-69

*116 .OTR 1-70

000 RN 1-72
--I~

~& "*124 STD 1-73

W=.:;)
c.!)CL '*126 LD 1-74

* 502 Mode only

SUMt~ARY OF HISTRUCTIONS
BY FUNCTION
(continued)

Ins truc t ion .OC

Test Binary Sign 040

Test Decimal Sign 042

Test Item 150

Test Literal 151

Test Mask 152

Test Item Mask 153

Special In 100

External Function On 104
Channel

Special Out 105

External Function 106
Special

GOTO On Active 107
Channel

Store Channe 1 Control 110
Register

Store Channel Reverse 111

Initiate Input 112
Reverse

Initiate Input On 114
Channel

Initiate Output On 115
Channel

Initiate Output 116
Reverse

Rename 000

Store Designators 124

~oad Des; gnators 126

x

Fonnat
OP1 OP2 OP3 OP4

AR/I

AR/I

AR/I AR/I

AR/I L

AR/I M

AR/I AR/I

AR/I AR/I

AR/I AR/I AR/I

AR/I AR/I

AR/I AR/I AR/I

AR/I address

AR/I AR/I

AR/I AR/I

AR/I B

AR/! B

AR/I B

AR/I B

B/R B/R

AR/I

ARt I

Op Code Page
Octal Mnem. No.

134 STT 1-75

136 LT 1-76

143 H 1-77

146 SOl 1-78

147 GAP 1-79
LLl
V')

0
0- 156 COl 1-80 O!
:::::>
0-

--1

~ 161 LSP 1-81
LLl
z
LLl
(!)

165 LR1 1-82

171 LR2 1-82

175 LR3 1-82

160 X 1-84

--1 162 RCK 1-85
c:(
u
........
(!)
0 164 0 1-86 --1

166 N 1-87

u 041 AB 1-89
f-
w
~ :c 045 SB 1-90
f-

~ 051 ALB 1-91 c:(

>-
O! 055 SLB 1-92 c:(
z
........
co

* 502 Mode only

SUMMARY OF I1JSTRUCTIONS
BY FUNCTION
(continued)

Instruction OC

Store Tally Counter 134

Load Tally Counter 136

Halt 143

Set Display 146
Indi cators

No Operation-Leave 147
Gap

Clear Display 156
Indi cators

Load Storage 161
Descriptor Pointer

Load Active Record 1 165

Load Active Record 2 171

Load Active Record 3 175

OR (Exc 1 us i ve) 160

Longitudinal 162
Redundancy Check

OR (Inclusive) 164

Logical AND 166

Add Binary 041

Subtract Binary 045

Add Literal Binary 051

Subtract Literal 055
Bi nary

XI

Fonnat
OP1 OP2 OP3 OP4

AR/I

AR/I

AR/I

AR/I

SOP

R

R

R

AR/I AR/I AR/I

AR/I AR/I

AR/I AR/I AR/I

AR/I AR/I AR/I

AR/I AR/I AR/I

AR/I AR/I AR/I

AR/I AR/l L

AR/I AR/I L

Op Code Page
Octal Mnem. No.

u 043 A . 1-94
~
L.J.J
::E: 047 S 1-95 ::c:
~
~ 053 AL 1-96 ~

....J
c::(057 SL 1-97 ::E:
u
l.JJ
c

014 CP 1-100

015 CPR 1-101

120 APR 1-102

c.!J
z 121 APA 1-103 ~
C
lJJ 122 APE 1-105
....J
c::(......
t-
z 130 EXV 1-107 l.J.J
:::>
0'
l.J.J
(/)

131 EXP 1-111
'.

132 EX 1-112

133 EXA 1-114

113 GSI 1-117

117 GCI 1-118

t- 154 SWS 1-119 0-

~
0::: 155 SIL 1-120 w
t-
Z
~ 157 CIL 1-121

174 1M 1-122

177 GIR 1-124

* 502 Mode only

sur~r~ARY or Ill(;TRUCTIONS
BY FUNCTION
(continued)

Instruction .OC

Add Decimal 043

Subtract Decimal 047

Add Literal Decimal 053

Subtract Literal 057 .
Decimal .

Compress Item, Left- 014
Al i9n, Fill

Compress Item, Right- 015
Align, Fill

Append, Right- 120
E1 iminate

Append, Advance 121

Append, Left- 122
Eliminate

Extract Variable 130
Length Item,' Fill

Extract Previous Item 131

Extract Item 132

Extract Item, Advance 133

GOTO On Service 113
Request

GOTO On Channel 117
Interrupt

Swap States 154

Set Interrupt Lockout 155

Clear Interrupt 157
Lockout

Interrupt Mask 174

Interrupt Branch GOTO 177

XII

Fonnat
OPI OP2 OP3 OP4

AR/I AR/I AR/I

AR/I AR/I AR/I

AR/I AR/I L

. AR/I . AR/I. L

AR/I AR/~ L.
1

Lf
~

AR/I AR/I L.
1

Lf

AR/I B L

AR/I B

AR/I B L
.

B AR/I Ls Lf

B AR/I

B AR/I

B AR/I

AR/I address

I
AR/I address

AR/I

B

Op Code Page
Octal Mnem. No.

004 LC 1-127

014 SEE 1-128

015 SCE 1-131

020 MB 1-132

LO 021 MLB 1-133
«:::::t
.-t

I

u 022 DB 1-134
0

023 DLB 1-135
(/')

z:
0

. t-4

....... 024 MD 1-136 u
=>
0:::
...... 025 MLD 1-137 (/')

z:
t-4

LLl
...... 026 DO 1-138 => u
LLl
x 027 OLD 1-139 LLl

-' c:(
z:
0::: 030 BTD 1-140 LLl
x
LLl 031 DTB 1-141

034 SDR 1-142

035 SBR 1-143
-"

* 502 ~'ode on 1 y

SUMMARY OF IflSTRUCTIONS

BY FUNCTION

(continued)

Instruction OC -
Load Delta Clock 004

Store External 014
Instru':tion Error

Store Channel 015
Parity Error

Multiply Binary 020

Mul t i ~ ly Literal 021
Binary

Divide Binary 022

Di vi de Literal 023
Binary

Multiply Decimal 024

Mu 1 tip 1 y Lite ra 1 025
Decimal

Divide Decimal 026

Divide Literal 027
Decimal

Binary to Decimal 030

Decimal to Binary 031

Store Decimal 034
Remainder

Store Binary 035
'Remainder

.

Xi~ I

Fonnat
~.- ...

OPI OP2 OP3 OP4

AR/ I ---- ----

---- ---- AR/I

---- ---- AR/I

AR/I AR/I AR/I

AR/I ---- AR/ I L

AR/I AR/I AR/I

AR/I ---- AR/I L

AR/I AR/I AR/I

AR/I· ---- AR/I L

AR/I AR/I AR/I

AR/I ---- AR/l L

AR/I ---- AR/I

AR/I ---- AR/l

---- ----- AR/I

---- ---- AR/I

Op Code Page
Octal Mnem. No.

d..ct:
~l.J.. 105 SVP 1-149

= or ;;§ SAP
~~
u
~~ 100 SRP 1-150
~~
~~

105 ORE 1-153

105 AND 1-154

z
0
~ 105 ORI 1-156 V)

z
c:::(
0...
Xa:l
Ww 105 LRC 1-158
z_
8~
t;~
::::>
0:::: 105 EMA 1-160 l-
V)

z:
1-4

100 SMA 1-161

,--,.'

* 502 Mode only

SUMMARY OF I!JSTRUCTIONS

BY FUNCTION

(continued)

In; ".l~uction OC
.-

Save (P) 105

Store (p) 100

OR (Exc 1 us; ve) 105.

Logical AND 105

OR (Inclusive) 105

Longitudinal Re- 105
dundancy Check

Enter Modul e 105
Accumulator

Store Module 100
Accumulator

XIV

Fonnat
OPI OP2 OP3 OP4

AR/I AR/I
002 002

AR/I AR/I
002

AR/I AR/I
001 001

AR/I AR/I
001 002

AR/I AR/ I
001 004

AR/I AR/I
001 001

AR/I AR/ I
001 050

AR/I AR/I
001

~

Octal

000

000

001

003

004

005

006

·007

014

015

020

021

022

023

024

025

026

027

030

031

040

041

042

043
* 5 02 Mo de 0 n 1 y .

Mnemonic

RN

M

MR

MED

MF

MRF

MJ

MRJ

CP

CPR

NOP

GGT

GLT

GNE

GE

GNL

GNG

G

GD

GS

TSS

AS

TDS

A

SUMMARY OF INSTRUCTIONS
BY OCTAL SEQUENCE

Page
No.

1-72

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-99

1-10

1-19

1-20

1-21

1-22

1-23

1-24

1-25

1-26

1-27

i-28

1-52

1-89

1-53

1-94

xv

Instruction

Rename

Move Item, Left-Align, No Fill

Move Item, Right-Align, No Fill

Move Item, Edi t

Move Item, Left-Align, Fill

Move Item, Right-Align, Fill

Move Item, Left-Justify, Fill

Move Item, Right-Justify, Fill

Compress Item, Left-Align, Fill

Compress Item, Right-Align, Fill

No Operation

GOTO Great"er Than

GOTO Less Than

GOTO Not Equal

GOTO Equal

GOTO Not Less Than

GOTO Not Greater Than

GOTO Unconditionally

GOTO On Designators

GOTO On Switches

Test Binary Sign

Add Binary

Test Decimal Sign

Add Decimal

Octal Mnemonic

044 CB

045 SB

046 CD

047 S

*050 MPK

051 ALB

*052 MUP
~

053 AL

055 SlB

057 SL

*061 GBG

*062 GBl

*063 GNB

*064 GBZ

:*065 GGBE

*066 GlBE

*071 GOG

*072 GDL

*073 GDN

*074 GDZ

*075 GGDE

*076 GLDE

100 INS

100 SRP

* 502 Mode only.

SUMr~ARY OF INSTRUCTIons
BY OCTAL SEQUENCE

(continued)

Page Instruction
No.

1-47 Compa re Binary

1-90 Subtract Binary

1-48 Compa re Dec i rna 1

1-95 Subtract Decimal

1-14 Move ~ Pack

1-91 Add Literal Binary

1-15 Move~ Unpack

1-96 Add Literal Decimal

1-92 Subtract litera 1 Binary

1-97 Subtract literal Decimal

1-29 GOTO Binary Greater Than

1-30 GOTO Binary Less Than

1-31 GOTO Bi nary Non-Zero

1-32 . GOTO Binary Zero

1-33 GOTO Bi na ry ~ Zero

1-34 GOTO Bi na ry .s. Zero

1-35 GOTO Decimal Greater Than

1-36 GOTO Decimal Less Than

1-37 GOTO Decimal Non-Zero

1-38 GOTO Decimal Zero

1-39 GOTO Decimal > Zero -
1-40 .GOTD Decimal < Zero

1-60 Special In

1-150 Store (P)

XVI

Octal Mnemonic

100 SMA

104 EF

105 OTS

105 SAP or SVP

105 ORE

105 AND

105 ORI

'105 LRC

105 ~MA

*106 EFS

107 GA

110 STC

*111 STR

*112 INR

*113 GSI

114 IN

115 OUT

*116 OTR •

*117 GCI

120 APR

121 APA (

122 APE

* 502 r~ode on Iy.

SUMMARY OF INSTRUCTIONS

BY OCTAL SEQUENCE
(continued)

Page Instruction
No.

1-161 Store Module Accumulator

1-61 External Function On Channel

1-62 Special Out

1-149 Save (P)

1-153 OR (Exclusive)

1-154 Logical AND

1-156 OR (Inclusive)

1-158 Longitudinal Redundancy Check

1-160 Enter Module Accumulator

1-~3 External Function Special

1-64 GOT a On Active Channel

1-65 Store Channel Control Register

1-66 S to re Channe 1 Reverse

1-67 'Initiate ~nput Reverse

1-117 GOTO On Service Request

1-68 Initiate Input On Channel

1-69 Initiate ·Output On Channel

1-70 Initiate Output Reverse

1-118 GOTO On Channel Interrupt

1-102 Append, Right-Eliminate

1-103 Append, Advance

1-105 Append, Left-Eliminate

XVII

Octal Mnemonic

124 STD

126 LD

130 EXV

131 EXP

132 EX

133 EXA

134 STT

136 LT

140 TRL

141 ~1L '

142 CAN

143 H

144 CL

*145 LC
(004)

*145 SEE
(014)

*145 SCE
(015)

*145 MB
(020)

*145 MLB
(021)

*145 DB
(022)

*145 DLB
(023)

* 502 Mode only.

SUMI·1t\,RY OF INSTRUCT Ions
BY OCTAL SEQUENCE

(continued)

Page
No.

Instruction

1-73 Store Designators

1-74 Load Designators

1-107 Extract Variable Length Item, Fi 11

1-111 Extract Previous Item

1-112 Extract Item

1-114 Extract Item, Advance

1-75 Store Tally Counter

1-76 Load Tally Counter

1-16 Transl ate Code

1-17 Move 'L i tera 1

1-49 Compare'Alphanumerics

1-77 Halt

1-50 Campa re Litera 1

1-127 "Load Delta Clock

1-128 Store External Instruction Error

1-131 Store Channel Parity Error

1-132 Mul tiply Binary

1-133 Multiply Literal Binary

1-134 Di vi de Bina ry

1-135 Oi vi de Literal Binary

XVIII

Octal Mnemonic

*145 MD
(O24)

*145 MLD
(025)

*145 DD
(026)

*145 DLD
(027)

*145 BTD
(030)

*145 DTB
(031)

*145 SDR
(034')

*145 SBR
(035)

146 SDI

*14-7 GAP

150 TI

151 TL

152 TM

*153 TIM

*154 SWS

*155 SIL

156 CDI

*157 CIL

*160 X

*161 LSP

* 502 Mo de 0 n 1 y .

SUMMARY (IF INSTRUCTIONS
BY OCTAL SEQUENCE

(continued)

Page Instruction
No.

1-136 Mul ti ply Decimal

1-137 Multiply Literal Decimal

1-138 Divide Decimal

1-139 Divide Literal Decimal

1-140 Bi nary to Decima 1

1-141 Decimal to Binary

1-142 Store Decimal Remainder

1-143 Store Binary Remainder

1-78 Set Display Indicators

1-79 No Operation-Leave Gap

1-54 Test Item

1-55 Test Literal

1-56 Test Mask

1-57 Test Item Mask

1-119 Swap States

1-120 Set Interrupt Lockout

1-80 Clear Display· Indicators

1-121 Clear Interrupt Lockout

1-84 OR (Exclusive)

1-81 Load Storage Descriptor Pointer

XIX

Octal Mnemonic

*162 RCK

*164 0

165 LR1

*166 N

*170 GeT

171 LR2

*172 GTB

*173 GRT

*173 1M

175 LR3

*176 GSB

*177 GIR

* 502 Mode only.

SUMMARY OF INSTRUCTIONS

BY OCTAL SEQUENCE

(continued)

Page Instruction .
No.

1-85 Longitudinal Redundancy·Check

1-86 OR (Inclusive)

1-82 Load Active Record 1

1-87 Logi ca 1 AND

1-41 GOTO On Count

1-82 Load Active Record 2

1-42 GOTO Table (Indirect Branch)

1-44 GOTO Return (Branch)

1-122 Interrupt Mask

1-82 Load Active Record 3

1-45 GOTO Subroutine (Branch)

1-124 Interrupt Branch GOTO

XX T

~

SECTlcn I

SYSTEH 2400 r1ACHINE CODE

This section describes the total SYSTEM 2400 machine - level instruction set.

Each instruction has a variable-length format, with

• an op code, to specify the operation to be performed,

and

• zero-to-four operands, to specify the records, items, buffers, etc., to
be operated upon.

The op code and operands are each I-byte long, with the op code first,

followed by the operands arranged in the prescribed sequence for a given instruction.
Op codes and operands are expressed in octal notation.

CONDITION DESIGNATORS

Condition Designators denote

• =, t, >, <

and

• arithmetic and abnormal-edit errors.

The Compare and the Test instructions establish conditions and set the appro
priate internal condition designators, which are used by the Branching instructions
to branch from the instruction execution sequence. Many of the Sequential Editing
instructions set the Equal designator to indicate when the end of a data trnasfer

to or from a working buffer has occurred. They also set the abnormal-edit designa
tor to indicate when the· receiving area in a data transfer is too small. Both the
arithmetic overflow and the arithmetic error designators denote errors caused by a

Binary or a Decimal Arithmetic instruction.

1-1

The designators remain set throughout program execution until they are reset

by subsequent instructions.

BINARY NUMBER SIGNS

The sign of a binary number is indicated by the most significant bit (r~SB) of

the most significant byte (MSBY) of the item: 0 = + and 1 = -

MSBV.

byte

I 00111100

t~1SB = +

MSBVl

byte

00000111

t.r~SB = +

t4SBV-.

byte

11111000

tt1SB = -

byte

11010101

byte

10011100

byte

01100100

byte

11110000 3-byte positive
binary number

2-byte positive binary number

2-byte negative binary number

All the negative binary numbers coded into the binary-oriented instructions
must be in the two·s complement form. To convert a binary number

change each bit
and add 1

two's complement.

a a 1 a 1 a 1 a
110 1 0 101

1

110 101 1 0

1-2

into two's complement notation,

to its opposite state (- one's complement)
to produce its

DE Crr~AL i~Ut-1BE R SIGNS

In decimal arithmetic, the sign of a number is indicated by the sign of the
least significant digit, as shown below.

byte byte byte

.... 1_6 _____ 2_......&.. __ +--:9~1 3-byte pas i ti ve decimal number

LLSD
The plus sign for the digit is expressed as "1111" in the sign zone (left

half) of the LSD (9 10) byte (position 7654).

7 6 5 4 3 2 1 0

11 1 1 1 1 0 0 1 I bit configuration for 910
L--v-J L--v-J

+ 9

~~
sign zone digit zone

For a minus number, such as

2 -9 3-byte negative decimal number,

The minus sign for the digit is expressed as 1101 in the sign zone of the LSD
byte, as shown below.

765 4 3 2 1 0

11 1 0 1 1 0 0 1 I bit configuration for -9 10

L--v-J L--v-J
9

In the SYSTEM 2400 EBCDIC character set, the negative numbers correspond to
the binary configurations for the letters J. through R, as noted below.

1- 3

Binary or Octal = r~umber and Corres[2onds

1101 0001 321 -1 J

1101 0010 322 -2 K

1101 0011 323 -3 L
1101 0100 324 -4 M

1101 0101 325 -5 N

1101 0110 326 -6 0
1101 0111 327 -7 P

1101 1000 330 -8 Q
1101 1001 331 -9 R

FUNCTIONS AI~D OPERATIOr~S

Each machine-code instruction is functionally categorized into one of the
following:

• Data Move (1-6): transfer a copy of a complete data string.
• Branching (1-18): conditional or unconditional branching from the normal

program sequence.

• Compare (1-46): compare data strings.
• Test (1-51): test for the sign or identity of an item.
• Input/Output (1-59): initiate and control input/output operations.
• General Purpose (1-71): perform various operational functions.
• Logical (1-83): AND, OR, or Exclusive OR.
• Binary Arithmetic (1-88): add and subtract in binary
• Decimal Arithmetic (1-93): add and subtract in decimal.

• Sequential Editing (1-98): manipulate data as it is transferred between
peri phera 1 s.

• Interrupt (1-116): interpret, control and process events that divert the
processor from main program execution.

to

• External Execute (1-125): instructions added by hardware expansion modules
to provide the following functions:

a. Multiply and Divide
b. Binary/Decimal Conversion
c. Del ta Clock

d. Channel Parity Error Determination

• Instruction Expansion t10dules A and B (1-144).

1-4

Individual instructions are described as follows:

FUI~CT IONAL CATEGORY
Descriptive I~ame of Instruction

f·1nemoni c Op Code = ABC
Octal Op Code = 123

PURPOSE: Brief explanation of what the instruction does.

FORt1AT: Format of the instruction.

OPERATION: Operation of the instruction and the programming details.

EXAMPLE: Typical example that uses the instruction.

1-5

DATA nOVE

The Data r·10ve instructions move a copy of OPI item to OP2 item, character-by
character; OPI item remains unchanged. The move is terminated when all of OPI item
is copied or when OP2 item is full. When OP2 item is longer than OPI item, the
excess positions are unchanged by the move operation, unless a fill operation is
specified.

Left-justification means omit copying the leading nulls, spaces, and zeros and
left-align the entry into the OP2 item with a character fill.

Right-justification means omit copying the trailing spaces and nulls (not
zeros) and right-align the entry into the OP2 item with a character fill.

The Da ta !~ove instructions include the following:

• t·10ve Item, Left A1 ign, I~o Fi 11 (1- 7)

• t~ove Item, Right Al ign, r~o Fill (1-8)

• !·10ve Item, Edit (1-9)

• t~ove Item, Left Ali g n, Fill (1-10)

• t·10ve Item, Right Align, Fill (1-11)
., r 10 vel te m , L eft J us t i f y, Fill (1- 12)

• r-10 vel t em, Rig h t Jus t i f y, Fill (1- 13)

• Move, Pack (1-14)
• Move, Unpack (1-15)
• Translate Code (1-16)
• r·10ve Literal (1-17)

1-6

PURPOSE:

FORMAT:

DATA nOVE
f10ve Item, Left-Align, iJo Fill

r1nemonic Op Code = r1

Octal Op Code = 000

To copy the data from one item to another, with the content of the
receiving item left-aligned.

OC 01 1 OP2

a....-O_OO---,_AR/I.J AR/ I 1
OPERATIOrJ: A copy of the contents of the OPI item is moved left-aligned into the

OP2 item. If OP2 is larger than OPl, the remaining characters are
unaffected. If OPI is larger than OP2, the extra OPI characters at
the right are truncated.

EXAMPLES~ No.1 OC OPI OP2

000 102 211 J

OPI IAsBCDEFI Item 2 of Active Record 1

OP2 IRICHARDsGI Item 11 of Active Record 2

OP2 IAsBCDEFsG I Item 11 0 f Ac t i ve Reco rd 2
after

OPI IAsBCDEFI Item 2 of Active Record 1
after

No.2 OC OPI OP2

000 102 211

OPI IAsBCDEFI Item 2 of Active Record 1

OP2 I PQRS I Item 10 of Active Record 2

OP2 IAsscl
after

Item 10 of Active Record 2

OPI IAsSCDEFI Item 2 of Active Record 1
after

PURPOSE:

FORt·1AT:

OJ.\"A nOVE

nove ItelTl~ Right-Align, l~o Fill

I1nemon i c Op Code = t1R

Octal Op Code = 001

To copy the data from one item to another, wi th the content of the

receiving item right-aligned.

DC OP1 OP2

001 AR/ I AR/ I I
·OPERATION: A copy of the contents of the OP1 item is moved right-aligned into the

OP2 item. If QP2 is larger than OP1, the remaining characters are

unaffected. If OP1 is 1 arger than OP2, the extra OP1 characters at

the left are truncated.

EXAf·1PL ES: I~o . 1 OC OP1 OP2

001 102 211

OP1 I AsBCDEF I Item 2 of Active Record 1

OP2 I RICHARDsG I Item 11 of Active Record 2

OP2 I RIAsBCOEF I Item 11 of Active Record 2
after

OP1
after

I AsBCOEF I Item 2 of Active Record 1

i~o. 2 OC OP1 OP2

001 102 210

OP1 I AsBCDEF I . Item 2 of Active Record 2

OP2 I PQRS I Item 10 of Active Record.2

OP2 I CDEF I Item 10 of Active Record 2
after

OP1 I AsBCDEF I Item 2 of Active Record 1
after

1-8

PURPOSE:

FORMAT:

DATA nOVE
nove, Ed it

r1nemonic Op Code = 11ED
Octal Op Code = *003

To copy the data from one item right-aligned to another item under
the control of a third mask item. Any remaining characters are
replaced with the specified fill character.

OC OPt OP2 OP3 OP4

I 003 I AR/ I AR/ I AR/ I r' L I
OPERATION: A copy of the contents of the OPl item is moved right-aligned into the

OP3 item under control of the OP2 mask item. Every OP2 mask character
that is equal to a null allows an OPl item character to be moved i~to

OP3. Every OP2 character that is not a null is itself moved to the OP3
item. After the move of all OPl characters, leading zeros, spaces,
commas, and nulls in the OP3 item are replaced by the fill literal
specified in OP4. The low-order digit of the result has its four bits
replaced 'tJith all ones (positive sign convention) .. The abnormal edit
designator is set if the OP2 or OP3 item is smaller than the OP1 item.

EXAMPLE:

OP1

DP2

OP3
before

OP4

OP3
after

DC OP1 OP2 OP3

I 003 101 102 212

10004998421

In n n , n n n , n n n . n nl
Ixxxxxxxxxxi

OP4

Item 1 of Active Record 1

Item 2 of Active Record 1

Item 12 of Active Record 2

Literal asterisk (134 in EBCDIC)

1* * 4,998.421 Item 12 of Active Record 2

1-9

PURPOSE:

FORMAT:

DATA r·10YE
Move Item, Left-Align, Fill

t1nemon i c Op Code = r·1F
Octal Op Code = 004

To copy the data from one item to another, with the contents of the
receiving item left-aligned and any remaining characters replaced by
a specified fill character.

OC OPI OP2 OP3

AR/ I AR/I L

OPERATION: A copy of the contents of the OPI item ;s moved left-aligned into the
OP2 item. If OP2 is larger than OPl, the remaining characters at the
right are replaced by the OP3 character. If OPI is larger than OP2,
the extra OPI characters at the right are truncated.

EXAMPLE: OC OPI OP2 OP3

I 004 124 215 000

OPI I GH IJ I Item 24 of Active Record 1

OP2 I ****** I Item 15 of Active Record 2

OP2
after

I GHIJnn I Item 15 of Active Record 2

OPI I GH I J I Item 24 of Active Record 1
after

1-10

PURPOSE:

FORr·1AT:

DATA nOVE

nove Item, Right-Al ign, Fill
f1nemon i c Op Code = r·1RF

Octal Op Code = 005

To copy the data from one item to another, with the contents of the
receiving item right-aligned and any remaining characters replaced by

a specified fill character.

OC OP~ OP2 OP3

005 AR/ I AR/ I L

OPERATIOfJ: A copy of the contents of the OP1 item is moved right-aligned into

EXAf·1PL E :

the OP2 item. If OP2 is larger than OPl, the remaining characters at

the left are replaced by the OP3 character. If OP1 is larger than OP2,
the extra OP1 characters at the left are truncated.

OC OP1 OP2 OP3

005 125 215 133 I.
OPl 14.50 I Item 25 of Active Record 1

OP2 1******1 Item. 15 of Acti ve Record 2

OP2 [SS4. 50 I Item 15 of Active Record 2
after

OP1 ~ Item 25 of Active Record 1
after

1-11

PURPOSE:

FORMAT:

DATA r'10VE

Hove Item, Left-Jus ti fy, Fi 11

Mnemonic Op Code = MJ
Octal Op Code = 006

To copy the data from one item to another, with the content of the
receiving item left-justified and any remaining characters replaced
by a specified fill character.

OC OP! OP2 OP3

I 006 AR/I AR/ I L

OPERATION: A copy of the contents of the OP1 item is moved into the OP2 item and
left-justified. Left-justification means that the leading (leftmost)
nulls, spaces, and zeros in the OP1 item are not moved to the OP2 item
and the remaining characters are left-aligned. Any remaining charac
ters at the right of OP2 are replaced by the OP3 character. If OP! is
larger than OP2, the extra characters at the right are truncated.

EXAMPLE: OC OP1 OP2 OP3

006 117 212 116

OPl I sznnAsBCn I Item 17 of Active Record 1

OP2 11234567891231 Item 12 of Active Record 2

OP2 I As BCn+++++++ I Item 12 of Act; ve Record 2
after

OP1 I sznnAsBCn I Item 17 of Active Record 1
after

1-12

PURPOSE:

FORr~AT :

DATA i W'4'E

nove Item, Right Justify, Fill
r1nemoni c Op Code = r.1RJ

Octal Op Code = 007

To copy the data from one item to another, with the content of the
receiving item right-justified and any remairiing characters replaced
by a specified fill character.

OC OPl - OP2 OP3

007 AR/ I AR/ I L

OPERAT IOfJ: A copy of the contents 0 f the OP1 item is mo.ved into the OP2 item and

right-justified. Right-justification means that the trailing (right
most) nulls and spaces in the OP1 item are not moved to the OP2 item
and the remaining characters are right-aligned. Any remaining charac
ters at the left of OP2 are replaced by the OP3 character. If OP1 is
larger than OP2, the extra characters at the right are truncated.

EXAMPLE: OC OP1 OP2 OP3

007 120 212 116

OP1 InsAB.Csznns I Item 20 of Active Record 1

OP2 11234567891231 Item 12 of Active Record 2

OP2
after

I ++++nsAB. Csz I Item 12 of Active Record 2

OP!
after

I nsAB. Csznns I Item 20 of Active Record 1

1-13

PURPOSE:

FORMAT:

DATA r,10VE

r·10ve, Pack

r·1nemon i c Op Code = r,1PT

Octal Op Code = *050

To extract the digit portions from a source item and pack them into a
destination item, eliminating th~ sign zones of all source bytes ex
cept the rightmost. Any remaining destination item positions are

filled with binary zeros.

OC OP1 OP2

I 050 AR/I AR/ I

OPERATION: The decimal information contained in OP1 is moved into OP2. The sign
zone changes place with the digit zone and the resultant byte is moved

right-aligned into OP2. The following transfers move only the digit
zone into OP2, thereby packing the digit zones of two source bytes into

one destination byte. After the contents of OPl are packed into OP2,
any remaining OP2 bytes are filled with binary zeros.

EXAMPLES:

OPI

OP2
before

OC OP1 OP2

050 321 102

Item 21 of Active Record 3

II 1 1 100 0 1 I 1 1 1 1 0 a 1 01 1 1 1 101 1 1 I
... I ,) ... , ,

"'" "'"
J ~ ...

+ 1 + 2 + 7

Item 2 of Active Record 1

11111110011100 00011111100011

Item 2 of Active Record 1

OP2 10 0 0 0 a 0 0 0 I 0 0 0 1 0 0 1 0 I 0 1 1 1 1 1 1 1 1
after ~ '----' '----'

. fi 11 byte 1· 2 7 +

1-14

PURPOSE:

FOR~1AT :

DATA r·10VE
r··10ve, Unpack

r~nemo.n i c Op Code = r·1UP
Octal Op Code = *052

To unpack packed decimal information from a source item right-aligned
into a destination item. Data is moved into the destination item in
zoned form. Any remaining OP2 item positions are filled with binary

zeros.

OC OP1 OP2

I 052 AR/ I AR/ I

OPERATION: The OP1 item contains packed decimal data. The numerics and the sign
of the rightmost OP1 byte are stored into the rightmost OP2 byte after
the sign zone and the digit zone have been switched around. For the
second OP1 byte, the four zone bits are added to the four lower bits
and stored into OP2. Then four zone bits are added to the remaining
upper four bits and stored into OP2. In this way, each OP1 byte
produces two OP2 bytes. After the contents of OP1 are unpacked into
OP2, any remaining byte positions in OP2 are filled with binary zeros.

EXAf.1PLE: OC OP1 OP2

I 052 301 314]

Item 1 of Active Record 3

OP1 10 a a a a 0 a 111 0 0 101 1 11 a 1 101 1 111
...... J ... J \ ow: I t ... It... J

fill 1 9 7 6 +

Item 14 of Active Record 3

OP2
before

(0 0 0 0 0 a a a I 0 a 0 0 a 0 a 0 I 0 a a 0 0 0 a a I 0 0 0 a a a I

Item 14 of Active Record 3

OP2 (1 1 1 100 a 1 I 1 1 1 1 100 1 I 1 1 110 1 1 1 I 1 1 1 101
after ,

ow: I ... tJ ... ,
l --... J • \.-... --zone 1 zone 9 zone 7 + 6

1-15

PURPOSE:

FORt~AT :

DATA r~OVE

Translate Code
Mnemonic Op Code = TRL

Octal Op Code = 140

To convert characters from one code, such as EBCDIC, to another code,
such as USASCI I.

OC OP1 OP2 OP3

140 AR/I AR/ I AR/I

OPERATION: Each character of the OPI item is sequentially translated into its
equivalent binary code from the table of character codes in OP2 and
sequentially entered into the OP3 item. The example below illustrates
the translation process.

EXAMPLE: OC OPl OP2 OP3

140 110 201 322

Item 10 of Active Record 1 is translated into Item 22 of Active Record
3 by means of the conversion table in Item 1 of Active Record 2.

OPl

OP2

OP3

1-16

The OP1 item contains the characters
ACT in code 1.

The binary value for each OPI charac
ter is added to the first location of
OP2, giving the location of the
equivalent character in binary of
code 2, which is then transferred
to OP3.

The code 2 equivalent is left-aligned
and any extra characters are un
affected.

PU RPOSE:

FORMAT:

DATA ~·10VE

i~(;'.'e Lite ra 1
r·1nemon i c Op Code = r·1L

nr~~l Op Code = 141

To fill an item with n specified character.

OC OP! OP2

I 141 AR/ I v r L

OPERATION: The OP2 literal is eiitcred into each position of the OP1 item.

EXAr'1PLE: OC

I 141

OP1 IABCDEF I
OP2 rn
OP1
after

I $$SS I

OP!

103

OP2

133

Item 3 of Active Record 1

Item 3 of Active Record 1

Literal Character: EBCDIC 133 = S
(See Appendix C)

1-17

BRAr~CHING

P RO GRAM S TART I H G AD D RES S CP -BrAS)

All addresses referenced in the "branch to" operands are relative to the
first address of the program instructions. Core-memory assignments are made after
the program is written and the starting address of the program ;s stored in the
PCB. The relative address of each branching instruction is added to the program
starting address (P-Bias) during instruction execution.

The Branching instructions include the following:

• rJo Operation (1-19)
• GOTO Greater Than (1-20)
• GOTO Less Than (1-211
• GOTO Not Equal (1-22)
• GOTO Equal (1-23)
• GOTO Not Less Than (1-24)
• GOTO Not Greater Than (1-25)
• GO TO Unconditionally (1-26)
• GOTO On Designators (1-27)
• G~TO On Switches (1-28)
• GOTO Binary Greater Than (1-29)
• GOTO Binary Less Than (1-30)
• GOTO Binary Non-Zero (1-31)
• GOTO Binary Zero (1-32)
• GOTO Binary ~ Zero (1-33)
• GOTO Binary ~ Zero (1-34)
• GOTO Decimal Greate~ Than (1-35)
• GOTO Decimal Less Than (1-36)
• GOTO Decimal f'Jon-Zero (1-37)
• GOTO Decimal Zero (1-38)
• GOTO Decimal ~ Zero (1-39)
• GOTO Decimal ~ Zero (1-40)
• GOTO On Count (1-41)
• GOTD Table (1-42)
, GOTO Return (Branch) (1-44)

" GOTO Subroutine (Branch) (1-45)
1-18

PURPOSE:

FORMAT:

BRAr~c H I I~G
lio Ope ra t ion

Mnemon i c Op Code = I~OP
Octal Op Code = 020

No operation. The instruction sequence is not changed.

OC Branch to

020 I Address

OPERATION: When the instruction is executed, no change to indicator lights, desig
nators, data, or instruction sequence is made.

This instruction may be used temporarily in a sequence of instructions,

where it will have no effect. The actual op code may be changed later
to IG I , 'GE ' , 'GNE ' , 'GLT ' , or 'GGT ' , so that subsequent execution of

the instruction may actually cause a branch to the specified address.

1-19

PURPOSE:

FORMAT:

BRAI~CH I!~G

GOTO Greater Than
Mnemonic Op Code = GGT

Octal Op Code = 021

To cause a branch from the instruction execution sequence when a
"greater than" condition exists.

OC Branch to

021 Addr~ss

OPERATION: When this instruction is executed and the GREATER THAI~ condi tion
designator is set and the EQUAL condition designator is ~ot set, the
instruction execution sequence is transferred to the "branch toll

address; otherwise, the execution sequence continues with the next
instruction. The designators are set by the execution of other
instructions.

EXAMPLE: OC Branch to

021 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at
location 011-234; otherwise, it continues with 010-165.

1-20

PURPOSE:

FORMAT:

BRA i ~ CHI i J G
GOTO Less Than

Mnemonic Op Code = GLT
Octal Op Code = 022

To cause a branch fro~ the instruction execution sequence when a
1I1 ess than ll condition exists.

OC Branch to

022 Addr:ess

OPERATION: When this instruction is executed and the GREATER THAN and the EQUAL
condition designators a~e not set, the instruction execution sequence
is transferred to the IIbranch toll address; otherwise, the execution
sequence continues with the next instruction. The designators are set
by the execution of other instructions.

EXAt·1PLE: OC Branch to

022 I 001 I 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.
If conditions are met, then execution is resumed at location 011-234;
otherwise, it continues with 010-165.

1-21

PURPOSE:

FORMAT:

BRANCH I!JG

GOTO Not Equal

t·1nemon i c Op Code = GNE

Octa 1 Op Code = 023

To cause a branch from the instruction execution sequence when a

"not equal ll condition exists.

OC Branch to

I 023 I Addr:ess

OPERATION: When this instruction is executed and the EQUAL condition designator
is not set, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues wi th
the next instruction. The designators are set by the execution of

other instructions.

EXA~1PLE : DC Branch to

I 023 I 001 I 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at
location 011-234; otherwise, it continues with 010-165.

1-22

PURPOSE:

FORMAT:

BRAI~CH I i~G

GOTO Equal
Mnemonic Op Code = GE

Octal Op Code = 024

To cause a branch from the instruction execution sequence when an
lIequal li condition exists.

OC Branch to

024 Addr:ess

OPERATION: When this instruction is executed and the EQUAL designator is set, the
instruction execution sequence is transferred to the "branch to"
address; otherwise, the execution sequence continues with the next
instruction. The designators are set by the execution of other
instructions.

EXAMPLE: OC Branch to

024 I 001 I 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, then execution is resumed at loca
tion 011-234; otherwise, it continues with 010-165.

1-· ?]

PURPOSE:

FORMAT:

BRAi~CH rr IG

GOTO Not Less Than

Mnemonic Op Code = GNL
Octal 'Op Code = 025

To cause a branch from the instruction execution sequence when a Iinot

less than" condition exists.

OC Branch to

I 025 Addr~ss

OPERATION: When this instruction is executed and the EQUAL condition designator
is set, or the EQUAL condition designator is not set and the GREATER
THAN condition designator is set, the instruction execution sequence
is transferred to the "branch to" address; otherwise, the execution

sequence continues with the next instruction. The designators are set
by the execution of other instructions.

EXAMPLE: OC Branch to

I 025 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-234; otherwise, it continues with 010-165.

1-24

PURPOSE:

FORMAT:

BRAl4CH lUG

GOTO f'lot Greater Than
r~nemon i c Op Code = GrJG

Octal Op Code = 026

To cause a branch from the instruction execution sequence when a "not
greater than" condition exists.

OC Branch Lo

026 Addr~ss

OPERATION: When this instruction is executed and the EQUAL condition designator
is set, or both the EQUAL and GREATER THAN condition designators are
not set, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set by the execution of
other instructions.

EXAMPLE: OC Branch to

. I 026 I 001 I 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.
If conditions are met, execution is resumed at location 011-234; other
wise, it continues with 010-165.

1-25

PURPOSE:

FORMAT:

BRAI,J CH I nG

GOTO Unconditionally

Mnemonic Op Code = G
Octal Op Code = 027

To cause a branch from the instruction execution sequence when this

instruction is executed.

OC Branch to

027 Addrfss

OPERATION: When this instruction is executed, the instruction execution sequence
is transferred to the "branch to" address.

EXAMPLE: OC Branch to

027 I 001 I 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being
executed. Execution is resumed at location 011-234.

1-26

PURPOSE:

FOR~IAT :

BRA:~CH I1JG

GOTO On Designators

Mnemonic Op Code = GO

Octal Op Code = 030

To cause a branch from the instruction execution sequence when a con
dition designator condition is matched in the bit configuration of the

specified mask.

OC OPI Branch to

~[~O 3_0-Ji-M_--L._ Ad d r~ s s

OPERATION: WhEn the instruction is executed and a bit in the OPI binary configura

tion is matched with one in the designators, the instruction execution

sequence is transferred to the "branch. toU address; otherwir:e., thp

execution sequence (ontinues with the next instruction. Thc (I~signators

are set by the execution of other instructions.

EXAMPLE:

ari ty I/O p

Hemory

Arithm

pari ty

etic error

etic overflow Arithm

DMA P arity

Not us

Abnorm

EquJJ

ed

al edit error

OC OPI

r 030 002

I 7 6 5 4

I

Branch to

001

3 2 1 ·01 Bit positions
of mask with
re:;pect to
designators,

P-Bias = 010-000

Location 010-162 contains the above instruction and it is being executed.

OPI (00000010 I
[OOOOOOtt I

set

bit ~onfiguration of 002

ABNORMAL EDIT ERROR and EQUAL condition
designators are set

(:j:~;: (; DCi,)i tion 1 is Fldtcned, ~~egaJdless of othel'~ designator scttin~~s,

PURPOSE:

FORMAT:

BRANCHING

GOTO On Switches
Mnemonic Op Code = GS

OctalOp Code = 031

To cause a branGh from the instruction execution sequence when any of
the operator panel GOTO switch settings is matched by the bit configura
tion of the specified mask.

OC OPl Branch to

031 M Addr:ess

OPERATION: When the instruction is executed and any of the operator panel switch
settings matches the bit configuration of OPl, the instruction execution
sequence is transferred to the "branch to" address; otherwise, the
execution sequence continues with the next instruction. The settings
are manually activated.

EXAMPLE: OC OP1 Branch to

....... 0_3_1 --'-_1_20_'"'---_00_1---10.1_2 3_4....J1 ,P -B i as = 010 -000

Location 010-162 contains the above instruction and it is being
executed. Switch setting B on the operator panel was manually set.

7 6 5 4 3 2 1 a

OP1 I ° 1 0 1 0 0 0 0 Position 6 and setting B

I match, which satisfies the
requirement of anyone B
position matching anyone
setting. Execution is
resumed at location 011-234.

1-28

PURPOSE:

FORMAT:

OPERATION:

EXAMPLE:

BRArJCH I iJG
GOTO Binary Greater Than

Mnemonic Op Code = GBG
0ctal" Op Code = *061

To cause a branch f:"" ~:he instruction execut{on sequc0ce when a
Itgreater than bi nary zero ll condition exi s ts"

OC OPl Branch to

061 .". ,., ': Address

When the instruction ;s executed and the contents of OP1 are greater
than binary zero, the instruction execution sequence is transferred to
the IIbranch toll address; otherwise, the execution sequence continues
with the next instruction. The designators are set as follows:

OPI = Binary ~ (GT) = 1

(=) = 1

OP1 > Binary ~ (GT) = 1 Branch
(=) = 0 performed

OP1 < Binary o (GT) = 0
(=) = 0

oc OP1 Branch to

061 221 001 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

PURPOSE:

FORMAT:

GOTO Binary Less Than

Mnemonic Op Code = GBL
Octal Op Code = *062

To cause a branch from the instruction execution sequence when a
"l ess than binary zero" condition exists.

OC OP1 Branch to

OPERATION: When the instruction is executed and the contents of OP1 are less than

EXAMPLE:

binary zero, the instruction execution sequence is transferred to the
"branch toll address; otherwise, the execution sequence continues with

the next instruction. The designators are set as follows:

OP1 = Binary 0 (GT) = 1
(=) = 1

OP1 > Binary 0 (GT) = 1
(=) = 0

OP1 < Binary 0 (GT) = a Branch
(=) = 0 performed

OC OP1 Branch to

I 062 221 001 060 I P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-30

PURPOSE:

FORMAT:

BR.A.r,1 CH Ii~G

GOTO Binary I~on-Zero

Mnemonic Op Code = GBN
Octal Op Code = *063

To cause a branch from the instruction execution sequence when a
"binary non-zero" condition exists.

OC OPl Branch to

063 AR/1 Address

OPERATION: When the instruction is executed and the contents of OPI are not equal
to binary zero, the instruction execution sequence is transferred to

EXAMPLE:

the "branch to" address; otherwise, the execution sequence continues wit
with the next instruction. The designators are set as follows:

OPI = Binary 0 (GT) = 1

(=) = 1 .

OP1 > Binary 0 (GT) = 1 Branch
(=) = 0 performed

o P 1 < Bin a ry 0 (GT) = 0 Branch
(=) = 0 performed

DC OP1 Branch to

063 221 001 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-31

PURPOSE:

FORMAT:

B RAfJ CHI riG

GOTO Binary Zero
Mnemonic Op Code = GBZ

Octal Op Code = *064

To cause a branch from the ins tructi on executi on se.quence when a
IIbinary zero" condition exists.

OC OP1 Branch to

064 AR/I Address

OPERATION: When the instruction is executed and the contents of OP1 are equal to
binary zero, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with
the next instruction. The designators are set as follows:

EXAMPLE:

OP1 = Binary 0 (GT) = 1 Branch
(=) = 1 performed

OP1 > Bi na ry o (GT) = 1

(=) = 0
OP1 < Binary o (GT) = 0

(=) = 0

OC OPl Branch to

064 221 001 060 I P-Bias = 010-000

Location 010-122 contains the above :nstruction and it is being

executed. If conditions are met, execution is resumed at location
o 11-a 6 0; 0 the rw i s e, i teo n t l n IJ e ~ " 'i .L h 0 10 -126 .

1-32

PURPOSE:

FORMAT:

BRAr~CH ING

GOTO Binary ~ Zero
Mnemonic Op Code = GGBE

Octal Op Code = *065

To cause a branch from the instruction execution sequence when an
"equal to or greater than binary zero" condition exists.

OC OPl Branch to

065 AR/l Address

OPERATIOtJ: When this instruction is executed and the contents of OPl are equal
to or greater than binary zero, the instruction execution sequence is
transferred to the "branch to" address; othel\AJise, the execution
sequence continues with the next instruction. The designators are
set as follows:

EXAMPLE:

OP1 = Binary 0 (GT) = 1 Branch
(=) = 1 performed

OP! > Binary 0 (GT) = 1 Branch
(=) = 0 performed

OPI < Binary 0 (GT) = 0

(=) = 0

OC OPI Branch to

065 221 OO! 060 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-33

PURPOSE: To cause a branch
"equal to or less

FORMAT: DC

(066

BRANCHING

GOTO Bina~y ~ Zero
Mnemonic Op Code = GLBE

Octal Op Code = *066

from the instruction execution sequence when
than bi na ry zero II condition exists.

OP1 Branch to

AR/I Address

an

OPERATION: When this instruction is executed and the contents of OP1 are equal
to or less than binary zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are
set as fo 11 ow s :

EXAMPLE:

OP1 = Binary 0 (GT) = 1 Branch
(=) = 1 performed

OP1 > Binary 0 (GT) = 1

(=) = 0

OP1 < Binary 0 (GT) = 0 Branch
(=) = 0 performed

OC OP1 Branch to

I 066 221 001 P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-34

PURPOSE:

FORMAT:

BRAi~CH ING

GOTO Decimal Greater Than
Mnemonic Op Code = GOG

Octal 'Op Code = *071

To cause a branch from the instruction execution sequence when a
"greater than decimal zero" condition exists.

OC OP1 Branch to

I 071 AR/ I Address

OPERATION: When the instruction is executed and the contents of OP1 are greater
than decimal zero, the instruction execution sequence is transferred
to the "branch toll address; otherwise, the execution sequence con

tinues with the next instruction. The designators are as follows:

EXAMPLE:

OP1 = Decimal ~ (GT) -- I
(=) = 1

OPI > Decimal 0 (GT) = 1 Branch
(=) = a performed

OPI < Decimal 0 (GT) = a
(=) = a

OC OP1 Branch to

[~0_71_.,-_2_21 ______ 00 1 DIU P-Bias = 010-000

Location 010-122 contains the above instruction and it is being
executed. If conditions are met, execution is resumed at location

011-060; otherwise, it continues with 010-126.

1- 35

PURPOSE:

FORMAT:

BRA[~Ct! IllG

GOTO Decimal Less Than

Mnemonic Op Code = GDL
Octal Op Code = *072

To cause a branch from the instruction execution sequence when a
"l ess than decimal zero 'l condition exists .

•
OC OP1 Branch to

, 072 AR/ I
------~~----------~

Address

OPERATION: When the instruction is executed and the contents of OP1 are less than
decimal zero, the instruction execution sequence is transferred to the
"branch to" address; otherwise, the execution sequence continues with

the next instruction. The designators are set as follows:

EXAMPLE:

OP1 = Decimal 0 (GT) = 1

(=) = 1
OP1 > Decimal 0 (GT) = 1

(=) = 0

OP1 < Decimal 0 (GT) = 0 Branch

(=) = 0 performed

OC OP1 Branch to

I 072 221 001 060 I P-Bias = 010-000

Location 010-122 contains the above instruction and it is being.
executed. If conditions are met, execution is resumed at location
011-060; othen~ise, it continues with 010-126.

1-36

PURPOSE:

FORMAT:

BRft.iJCHIr~G

GOTO Decimal Non-Zero
Mnemonic Op Code = GDN

Octal Op Code = *073

To cause a branch from the instruction execution sequence when a
"decimal non-zero" condition exists.

OC OP1 Branch to

I 073 AR/I Address

OPERATION: When the instruction is executed and the contents of OP1 are not equal
to decimal zero, the instruction execution sequence is transferred

EXAMPLE:

to the "branch to" address; otherwise, the execution sequence continues
with the next instruction. The designators are set as follows:

OP1 = Decimal 0 (GT) = 1
(=) = 1

OP1 > Decimal 0 (GT) = 1 Branch
(=) = 0 performed

OP1 < Decimal 0 (GT) = 0 Branch
(=) = 0 performed

OC OP1 Branch to

I 073 AR/I 001 060 I P-Bias = 010-000

Location 010-122 contains the above instruction and it is bei~g executed.

If conditions are met, execution is resumed at location 011-060; other
wise, it continues with 010-126.

1-37

PURPOSE:

FORMAT:

OPERATION:

EXAMPLE:

BRANCHING
GOTO Decimal Zero

Mnemonic Op Code = GDZ

Octal Op Code = *074

To cause a branch from the instruction execution sequence when a
IIdecimal zero" condition exists.

OC OP1 Branch to

I 074 AR/I Address

When the instruction is executed and the contents of OP1 are equal
to decimal zero, the instruction execution sequence is transferred to
the IIbranch to'l add res s; otherwi se, the exec uti on sequence conti nues

with the next instruction. The designators are set as follows:

OP1 = Decimal 0 (GT) = 1 Branch
(=) = 1 performed

OP1 > Decimal 0 (GT) = 1
(=) - 0

OPl < Decimal 0 (GT) = 0

(=) = 0

OC OP1 Branch to

1074 I 221 001 060 I . P-Bias = 010-000

Location 010-122 contains the above instruction and it is being

executed. If conditions are met, execution is resumed at location
011-060; otherwise, it continues with 010-126.

1-38

PURPOSE:

FORMAT:

BRArJCH IfJG
GOTO Decimal> Zero

Mnemonic Op Code = GGDE
Octal Op Code = *075

To cause a branch from the instruction execution sequence when an
"equal to or greater than zero" condition exists.

OC OPt Branch to

1 075 I AR/I) Address

OPERATION: When this instruction is executed and the contents of OP1 are equal to

EXA~1PLE :

or greater than decimal zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution sequence
continues with the next instruction. The designators are set as follows:

OP1 = Decimal 0 (GT) = 1 Branch
(=) = 1 performed

OP1 > Decimal 0 (GT) .- 1 Branch
(=) = 0 performed

OP1 < Decimal 0 (GT) = a
(=) = a

OC OP1 Branch to

1
075 1221 001 060 P-Bias = 001-000

Location 010-122 contains the above instruction and it is being

executed. If conditions are met, execution is resumed at location
010-060; otherwise, it continues with 010-125.

1-39

PURPOSE:

FORMAT:

BRAliCH ING

GOTO Decimal < Zero
Mnemonic Op Code = GLDE

Oct~l Op Code = *076

To cause a branch from the instruction execution sequence when an
"equal to or less than zero" condition exists.

OC OPl Branch to

076 AR/I Address

OPERATION: When this instruction is executed and the contents of OPl are equal
to or less than decimal zero, the instruction execution sequence is
transferred to the "branch to" address; otherwise, the execution
sequence continues with the next instruction. The designators are

set as follows:

EXAMPLE:

OPl = Decimal ~ (GT) = 1 Branch
(=) = 1 performed

OP1 > Decimal 0 (GT). = 1

(=) = 0

OPl < Decimal 0 (GT) = 0 Branch
(=) = 0 performed

OC OPl Branch to

076 221 001 060 P-Bias = 001-000

Location 010-122 contains the above instruction and it is being executed.
If conditions are met, the execution is resumed at location 011-060;
otherwise, it continues with 010-125.

1-40

PURPOSE:

FORMAT:

BRAr~ CH I rJ G
GOTO On Count

Mnemonic Op Code = GCT
Octal Op Code = *170

To provide timing-loop or count-down capabilities by testing the
OP1 item for binary zero.

OC OP1 Branch to

170 AR/I Addres s

OPERATION: When the instruction is executed and the contents of OP1 are equal
to binary zero, the instruction execution sequence continues with

EXAMPLES:

the next instruction. If the contents of OP1 are not equal to binary
zero, a binary 1 is subtracted from OP1 and the execution sequence
is transferred to the "branch to" address.

OC OP1 Branch to

170 202 004 005 ,. P-Bias = 001-000

Location 001-000 contains the above instruction and it is being

executed.

No. 1 OP1 I 372
before

OP1 [3!Tl
after

Branch to location 005-005.

OP1
before'

OP1
after

000

000

Continue with 001-004.,

1-41

Item 2 of
Active Record 2

Item 2 of
Active Record 2

Item 2 of
Active Record 2

Item 2 of
Active Record

· .J(.,.#. ,~?
I fAN"" . tI. ~BRAIKHIiJG

OfY ~~l GOTO Table (Indirect Branch)

., AA vJ/l Mnemon i c Op Code = GTS

~~ OctalOp Code = *072

PURPOSE:

FORMAT:

To find a "branch toll address by using an index number which leads

to the branch address in a table that makes up OP2. OP3 contains the
upper table limit.

OC OP1 OP2

172 AR/I AR/ I

index table

OP3

L

upper
1 imi t

OPERATION: The OP2 item is a table of two-byte addresses. The OPI index number
;s multiplied by two and added to the beginning OP2 address. The
resultant address and the resultant address + 1 form the "branch'to"
address. When the instruction is executed, the execution sequence is
trans ferred to thi s "branch to" address.

EXAMPLES:

OP1 x 2 + OP2 = location of upper address address

location of upper address + 1 = location of lower address.

If the OPI index is greater than the OP3 literal (upper limit of
table), the branch is not made and the execution sequence continues
with the next instruction.

He. 1 OC OPI OP2 OP3

172 103 307 004 P-Bias = 001-000

Location 001-000 contains the above instruction and it is being executed.

OPI [§J Item 3 of Active Record 1

OP2 002-000 XXX } adr. 0 -001 XXX
-002 XXX } adr. 1 -003 XXX
-004 005 } adr. 2 Item 7 of Active Record 3 -005 221
-006 XXX } adr. 3 -007 XXX
-010 XXX
-011 XXX } adr. 4

1-42

OP3 I 004 upper limit: address 004 of OP2 table

OP1 X 2 + OP2
add res s = location of upper address

002 x 2 + 002-000 = 00~-004 = location of upper address = 005 (from
table)

upper address (002-004) + 1 = lower address (002-005) = 221 (from table)

IIbranch toll address 005-221

+ P-Bias 001-000
. next instruction 006-221

Branch to location 006-221.

r~o. 2 OC OP1 OP2

172 214 107

OP3

004 P-Bias = 001-000

Location 001-000 contains the above instruction and it is being executed.

OP1 ~ Item 14 of Active Record 2

OP2 002-000 XXX } adr. 0 -001 XXX
-002 XXX } adr. 1 -003 XXX
-004 005 } adr. 2 -005 221 Item 7 of Active Record 1
-006 016 } adr. 3 -007 117
-010 XXX } adr. 4 -011 XXX
-012 any

data

OP3 ~ upper limit: address 004 of OP2 table

OP1 x 2 + OP2 = location of upper address address

005 x 2 + 002-000 = 002-012 = illegal address (beyond the limit of
table, specified in OP3)

Continue with 001-004.

1-43

PURPOSE:

FORMAT:

BRAr~CHING

GOTO Return (Branch)
Mnemonic Op Code = GRT

Octal Op Code = *173

To return from a subroutine to a main routine return address. The
P-address is read from a push-down stack buffer. See the GSB instruc
tion on the preceding page.

OC OP1

173 B

OPERATION: OP1 defines a push-down stack buffer which contains the return address.

EXAMPLE:

The push-down stack buffer consists of a set of two-byte entries which
define return addresses. The P-address for the return address is
located at the current buffer pointer address minus one and minus two.
After retrieving the return address, the current buffer pointer is
decremented by two. A branch is made to the return address. P-bias
is not added to the return address prior to the branch.

OC OP1

173 001 P-Bias = 012-000

P-address before = 013-077

SDAT Entry
OP1
before

001 010-002] 010-3~iJ PUSH-DOWN BUFFER DESCRIPTOR

PUSH-DOWN BUFFER

Pa 010-000 012-265
Pb 010-002 xxx-xxx

010-375 xxx-xxx
SDAT Entry

OP1
after

001 020-000 I 010~377

P-address after = 012-265

1-44

PUSH-DOWrJ BUFFER DESCRIPTOR

PURPOSE:

FORMAT:

BRANCHH~G

GOTO Return (Branch)
Mnemonic Op Code = GSB

Octal Op Code = *176

To branch to a subrr':tine and save the return main rOt,·~ine P-address
in a push-down stack buffer. The limitation on nesting ;s determined
by the size of the push-down stack buffer.

OC OP1 Branch to

176 B Address

OPERATION: OP1 defines a push-down stack buffer. When this instruction is executed,

EXAMPLE:

•
the P-address of the next instruction .is placed in the current push-
down buffer pointer address and current push-down buffer pointer plus
one. The push-down buffer consists of two-byte entries (return ad
dresses). The current buffer pointer address is advanced by two and a
branch ;s made to the designated subroutine.

OC OP1 Branch to

176 001

P-address before = 012-261
P-address return = 012-265

001

SDAT Entry

000 P-Bias = 012-000
'-----------1 001-000

• 013-000

P-after 1013-000

OC OPI. . . OPn
subroutine .

013-077 GRT B

OP1 001 L __ 01..:.-0_-0_0_0_-&.1_0_lO_-_37_7--J1 PUSH-DOWN BUFFER DESCRIPTOR
before -

Pb 010-000
Pa 010-002

OP1
after

.
010-376

001

PUSH-DOWN BUFFER

012-265
XXX-XXX

XXX-XXX

SOAT Entry

I 010-002 010-377

1-45

PUSH-OOWI~ BUFFER OESCRI PTOR

COMPARE

ESTABLISH CONDITIONS

The Compare instructions establish relational conditions by setting appropriate
internal condition designators, which are utilized by the Branching instructions as
branching conditions.

The Compare instructions include the following:

• Compare Binary (1-47)
• Compare Decimal (1-48)
• Compare Alphanumeric (1-49)
• Compare Literal (1-50)

1-46

PURPOSE:

FORMAT:

Cor~PARE

Compare Binary
Mnemonic Op Code = CB

actal Op Code = 044

To compare two binar. ·i~lbers and thereby establish a c :ndition desig
nation of equality: >, =, or <.

OC OP! OP2

044 AR/T AR/I

OPERATION: The OP! item is compared to the OP2 item, and their relationship is
indicated by the internal condition designator settings below:

GREATER THAN is set when
EQUAL is set when
Both are not set when

1-47

OPl > OP2
OP! = OP2
OP! < OP2

PURPOSE:

FORMAT:

COMPARE
Compa re Dec i ma 1

Mnemonic Op Code = CD
Oct~l Op Code = 046

To compare two decimal numbers and thereby establish a condition
designation of equality: >, =, or <.

OC OP! OP2

046 AR/I AR/I

OPERATION: The OP! item is compared to the OP2 item, and their relationship is
indicated by the internal condition designator settings below:

GREATER THAN is set when OP! > OP2
EQUAL is set when OPl = OP2
Both are not set when OP! < OP2

1-48

PURPOSE:

FORMAT:

Cor~PARE

Compare Alphanumerics
Mnemonic Op Code = CAN

Octal Op Code = 142

To compare all the characters in one item with those of another item
and thereby establish a condition designation of equality: = or f.

OC Ol-il OP2

142 AR/I AR/I

OPERATION: All the characters of OP1 and OP2 are compared, starting with the
leftmost character of each item. [~ull characters are considered
equivalent to any alphanumeric. OP1 can be larger than OP2, but not
the reverse. The result of the comparison is indicated by the con
dition, designators below:

EQUAL is set when OP1 = OP2

EXAMPLES: No.1

OP1 I ABcnX71

OP2 I ABC5X7
1

r~o. 2

OP1 I ABcnX7!

OP2 IABC I.
r~o. 3

OP! I ABC I
OP2 I ABc nx7 1

OP1 and OP2 are equal because the n and the 5
are equivalent for this comparison.

OP1 and OP2 are equal; OP1 can be >, but
not the reverse.

OP1 and OP2 are not equal, since OP2 > OPI.

1-49

PURPOSE:

FORMAT:

cor~PARE

Compare Literal
Mnemonic Op Code = CL

Octal Op Code = 144

To determine whether all of the characters in an item are the same as
a specified literal and thereby establish a condition designation of
equality: = or f.

OC OP1 OP2

144 AR/I L

OPERATION: All the characters in the OP1 item are compared to the specified literal
character to establish whether they are all the same as the literal or
the Null character. The result of the comparison is indicated by the
condition designator below:

EQUAL is set when OPI = L or n

EXAMPLE: OP1 I ***nn* I OPI and OP2 are equal because the nand

OP2 ~ the asterisk are equivalent for this
comparison.

1-50

TEST

ESTABLISH CONDITIONS

The Test instructions establish

• The sign of a binary or a decimal number

or

• The occurrence of a given character

or

• A bit correspondence.

The Test instructions are utilized by the Branching instructions as branching
conditions.

The Test instructions include the following:

• Test Binary Sign (1-52)
• Test Decimal Sign (1-53)

• Test Item (54)
• Test Literal (1-55)

• Test Mask (1-56)
• Test Item Mask (1-57)

1-51

PURPOSE:

FORMAT:

OPERATION:

TEST

Test Binary Sign

Mnemonic Op Code = TBS

Octal. Op Code = 040

To examine the sign of a given binary number and thereby establish a

+ or - condition designation.

OC OPl

[040 AR/ I

The sign of the OPl item (binary number) is examined to determine

whether it is + or -. The sign is indicated by a a (+) or a 1 (-)

in the MSB of the MSBY, and the condition designator is set accordingly:

GREATER THAN is set when the MSB = a (which means +)

EXAMPlES: No.1

No.2

MSBY

OPl 10 1 1 all 1 110 0 0 1 1 a 0' 11 2-byte i tern

L ["iSB i ndi ca tes a + bi nary number

r'1SRY

OPI 11 1 1 0 1 1 1 110 0 a 1 1 0 0 11 2-byte item

L MSB i ndi cates a - bi na ry number

1-52

PURPOSE:

FORMAT:

TEST

Test Decimal Sign
Mnemonic Op Code = TDS

Octal Op Code = 042

To examine the sign of a given decimal number and thereby establish a
+ or - condition designation.

OC OP2

042 AR/I

OPERATION: The sign of the OP1 item (decimal number) is examined to determine
whether it is + or -. The sign is indicated by the sign zone of the

least significant digit of the number, and the condition designator is
set accordingly:

GREATER THAN is set when the number is positive.

EXAMPLES: No.1

.-bit configuration of LSU is 1111 0011

OP1 7 2 3 I a 3-digit (or 3-byte) positive number

No. 2
.--- bit configuration of LSD is 1101 0011

OP1 7 2 3 I a 3-digit (or 3-byte) negative number

PURPOSE:

FORMAT:

TEST
Test Item

Mnemonic Op Code = TI
Octal Op Code = 150

To determine whether the first character in one item appears in any
positions of another item and thereby establish a condition desig
nation.

OC OP1 OP2

150 AR/! AR/I

OPERATION: The OP2 item is tested for the occurrence of the leftmost character of
the OP1 item, and the condition designator is set accordingly:

EXAMPLE: OP1

EQUAL is set when OP2 contains at least one character corresponding
to the first character of OP1.

OP2

1-54

I FZA45

t

PURPOSE:

FORr~,L\ T :

TEsr
Te s t Lite r'a 1

Mnemonic Op Code = TL
Octal Op Code - 151

To determine whether an item contains a specified literal and thereby
establish a condition designation.

OC OP! OP2

OPERATION: The OPl item is tested for the uccurrence of the speci Fied 1 iteral)

EXAMPLE:

and the condition designator is set accordingly:

EQUAL is set when OP! contains the literal at least once.

OPI ABBDBE

t
OP2

1· 55

IT]
t

PURPOSE:

FORMAT:

TEST
Test Mask

Mnemonic Op Code = TM
Octal Op Code = 152

To determine whether the leftmost character of an item has a bit in any
position corresponding to the bits in the mask, and thereby establish
a condition designation.

OC OPI OP2

152 AR/-I M

OPERATION: The bit configuration of the leftmost character of the OPI item is
compared with the bit configuration of the specified mask. If there
is a bit correspondence with any of the character bit positions, then
the condition designator is set accordingly:

EQUAL is set when a bit correspondence exists.

EXAMPLE: OPI 011011011 character character

OP2 001000011 Either correspondence would be sufficient

1-56

PURPOSE:

FOR~1AT :

TEST
Test Item it\.sk

Mnemoni c Op Code .. T H1

Octal Op Code = *153

To scan an 'j t:::nl of unknown contents wi th an item of pre··deterrnined
contents and look for a one-bit compare in any bit position.

OC OPI OP2

1--153-r~\R/ I A RiIJ
OPERATION: The leftmost OPl item character is compar(~d against the OP? item charac,~

terse If any lIonL" bit in the OPI scan ellarJcter matches a lIone'; bit

position in the OP2 character, the instruction is terminated. Other
wise, the instruction is terminated at the end of the OP2 item. EQUAL
is set when any lIone ll bit in the OPl scan character matches a lIone ll bi t
position in the OP2 character.

EXAMPLES:

No.1

No.2

DC

153

OP1

OP2

OP1 OP2

204 377

342 114

001 020

scan character
342

034

Item 4 of Active Record 2

Item 77 of Active Record 3

disregarded
114

OPI 11 1 1 0 0 0 1 0 I 0 1 0 0 1 1 0 0 I

scan 1 scan 2 scan 3

OP2 10 0 0 0 0 0 0 1 I 0 0 0 1 0 0 0 0 I 0 0 0 1 1 1 0 ~

OPl

OP2

no compare no compare no compare, end of
OP2, instruction
is te rmi na ted

312 L~
001 I 040 I 034 l

1-57

Item 4 of Active Record 2

Item 77 of Active Record 3

scan character
342

OPI I 1 1 ~ () 0 01
~------ -_ .. _-

sca t- 1

OP2
1
0 o 000 0 0

no compare

disregarded
114

o 10 100 1 1 0 01
scan 2

1
1
0 o 100 0 0 o I 0 o 0 1 1 1 0

compare not scanned

matched bit position,
instruction is ter
minated and EQUAL
is set.

1-58

01

INPUT/OUTPUT

INTERACTION

The I/O instructions initiate, control, and direct the I/O operations and
interaction with the peripherals. This activity takes place between the input
and output buffers and the I/O channel and its associated peripherals.

GENERAL I/O OPERATIONS

The Initiate Input On Ch~lnel and the Initiate Output On Channel instructions
are used to initiate the standard input and output operations on a specified I/O
Selector Channel and designate the appropriate buffer and peripherals. Hardware
registers temporarily store and maintain the count of the characters into and out
of the I/O buffers. Channel designators indicate appropriate active or inactive

conditions Dn the specified channel.

RELATED I/O OPERATIONS AND STATUS

The External Function On Channel instruction i~ used to transmit operational
commands (such as read) to a peripheral and to determine the operational status of
the peripheral. GOTO On Active Channel is a branch instruction that is used to
branch away from the normal instruction execution sequence if a specified channel
is active. The Store Channel Control Register is used to store the current charac
ter address derived during the general I/O operations.

SPECIAL I/O OPERATIONS

The Special In and the Special Out instructions are used to perform the I/O

operations on the DMA channels.

REVERSE I/O OPERATIONS

The reverse buffering capabilities are used to buffer input/output data in
reverse when the connected I/O device is reading or writing in reverse.

The Input/Output ins.tructions include the following:

• Special In (1-60) • Store Channel Reverse (1-66)
• Ex tern a 1 Fun c t i on On C h ann e 1 (1-61) •

• Special Out (1-62) •
.• External Function Special (1-63) •

• GO TO On Active Channel (1-64) •
• Store Channel Control Register (1-65)

Initiate Input Reverse (1-67)
Initiate Input On Channel (1-68)
Initiate Output On Channel (1-69)
Initiate.Output Reverse (1-70)

PURPOSE:

FORMAT:

INPUT/OUTPUT
Special In

Mnemonic Op Code = INS
Octal .Op Code = 100

To direct the input data to a given storage area when using a DMA

channel.

DC OPI OP2

100 AR/I AR/ I

OPERATION: The input data received through the specified DMA channel interface
module in OPI is stored in the OP2 item, left-aligned.

EXAMPLE:

OPI item specifies the DMA channel number connected to the DMA inter
face module.

DP2 item is to receive the input data.

The documentation for the specific interface module provides detailed
information concerning the input data.

DC OPI OP2

100 241 304

OPI Item 41 of Active Record 2 contains the DMA channel number.

OP2 Item 4 of Active Record 3 is to receive the input data.

1-60

PURPOSE:

FORMAT:

Ir~PUT lOUT PUT
External Function On Channel

Mnemonic Op Code = EF
Octal Op Code = 104

To transmit operational commands (such as READ EBCDIC) to a peripheral
device and determine its status.

oc OP1 OP2 OP3

104 A_R_I _I _______ A_R/_I --L-_ARI !J
OPERATION: The External Function code in the OP2 item is transmitted over the 1/0

channel specified in the OP1 item to the peripheral device, which
replies with a status code that is placed in the OP3 item. If the
status is not rec~lved within a specific time period, one null charac
ter is stored in the first status byte and the next instruction is
executed. The meanings for the External Function and the status codes
are dependent upon the type of peripheral.

EXAMPLE:

NULL characters are sent as command bytes after the end of the OP2 item
when OP2 < OP3. The next instruction is executed when OP3 ends.

No status bytes are stored in the status area after the end of the OP3
item when OP2 > OP3. The next instruction is executed when OP2 ends.

Both the function request (FRQ) control line and the data request (DRQ)
control line are active on the first command byte. Only the FRQ is
active on each succeeding command byte of the OP2 item.

For a complete explanation, see PROCESSOR PROGRAMMING IN MACHINE CODE,
Form No. M-2269:

OC OP1 OP2 OP3

104 103 104 110

The items are all located in Active Record 1.

OP1 Item 3 contains the channel number for the peripheral.
OP2 Item 4 contains the External Function code for a specific

peripheral.
OP3 Item 10 is to s tore the status ccd r " from the peri pheral .

1-61

PURPOSE:

FORMAT:

INPUT/OUTPUT

Special Out

Mnemonic Op Code = OTS

Octal Op Code = 105

To direct output data from a given storage area when using a DMA
channel.

OC OPI OP2

105 AR/ I AR/I

OPERATION: The output data from the OP2 item is sent to the DMA channel interface
module specified in OPI.

EXAMPLE:

OPI item specifies the DMA channel number connected to the DMA inter
face module.

OP2 item contains the output data.

The documentation for the specific interface module provides detailed
information concerning the output data. '

OC OPI OP2

["i05 120 212

OP1 Item 30 of Acti ve Record 1 contains t~e DMA channel number.

OP2 Item,12 of Active Record 2 contains the output data.

1-62

PURPOSE:

FORMAT:

To prevent issue

INPUT/OUTPUT
External Function Special
Mnemonic .Op Code = EFS

Octal Op Code = *106

of a data request for I/O
such a signal; otherwi se, this instruction

oe OP1 OP2 OP3

106 AR/I AR/ I AR/I I

devices that do not require
is the same as EF.

OPERATION: The EFS instruction prevents the issue of DRQ for I/O devices that may
function improperly on receiving such a signal. This instruction
guarantees 2408 compatibility via software for all I/O applications
that do not require the above signal.

1-63

PURPOSE:

FORMAT:

INPUT/OUTPUT
GOTO On Active Channel
Mnemonic Op Code = GA

Octal. Op Code = 107

To cause a branch frolll the instruction execution sequence when the
specified channel is active.

OC OPI Branch to

107 AR/I Add~ess

OPERATION: If the channel specifled in OP1 is active, then the instruction execu
tion sequence is transferred to the "branch to" address; otherwise, the
execution sequence is continued.

EXAMPLE: 107 I 001 001 234 P-Bias = 010-000

Location 010-162 contains the above instruction and it is being execu
ted. If channel 001 (OPl) is active, then execution is resumed at
location 011-234; otherwise, it continues with 010-166.

1-64

PURPOSE:

FORMAT:

INPUT/OUTPUT
Store Channel Control Register

Mnemonic'Op Code = STC
Octal Op Code = 110

To store the contents of the channel control register.

OC OP1 OP2

110 AR/ I AR/I

OPERATION: Stores in the OP2 item the "current character address" of the channel
control register specified by the OPI item. See the operation descrip
tions of the IN and OUT instructions for the meaning of the "current
cha racter address. II

EXAMPLE: OC OP1 OP2

.1 110 117 212

OPI Item 17 of Active Record 1 contai·ns the channel number in binary.

OP2 Item 12 of Active Record 2 is to receive the current character
address.

1-65

PURPOSE:

FORMAT:

INPUT/OuTPUT

Store Channel Reverse

Mnemonic Op Code = STR

Oct~l" Op Code = *111

To store the last address buffer control work for a specified channel.

OC OP1 OP2

111 AR/I AR/I I

OPERATION: The last address buffer control word for the channel specified by OP1
is stored into the it'em specified by OP2.

EXAMPLE:

OP1

OP2
before

OP2
after

NOTE

The 2408 has two buffer control addresses for each
individual selector channel. One buffer address is
used for forward buffering of data. The other buffer
address is used for reverse buffering. Thus, the
last address buffer control word is being decremented
for every character that is transferred between the
I/O device and the processor during reverse buffering.
All reverse buffering instructions are "mainly used to

enable the processor to receive data from a magnetic
tape unit reading backwards.

OC OP1 OP2

111 201 202

~ Item 1 of Active Record 2

Channe 1 6

1 000 000 I Item 2 of Active Record 2

1127 322 1 con tro 1 memory

. ~ ~
I I address 35

1127 3221

1-66

PURPOSE:

FORMAT:

INPUT/OUTPUT
Initiate Input Reverse
Mnemonic Op Code = INR

Octal Op Code = *112

To store data reverse into a specified buffer through a specified

channel.

OC OP1 OP2

112 AR/I B

OPERATION: OP2 specifies an input buffer, where the last address ;s used as the
current address, always being decremented after each character transfer.
The loading of the buffer is terminated and the channel designator is
reset when the first address of the buffer is reached. Data is received
through the channel specified in the OPI item. OP2 defines the buffer
in the following manner:

BCW

{

First address

Last address

2 bytes

BCW 2 bytes

NOTE

The 2408 has two buffer control word addresses for
each individual selector channel. One buffer address
is used for forward buffering of data. The other buf
fer address is used for reverse buffering. Thus, the
last address buffer control is being decremented for

every character that is transferred between the I/O

device and the processor during reverse buffering. All
reverse buffering instructions are mainly used to enable

the processor to receive data from a magnetic tape unit

reading b~ckwards.

The I/O parity designator is set if a parity error is
detected on the input data.

1-67

PURPOSE:

FORMAT:

II~PUT /OUTPUT
Initiate Input On Channel

Mnemonic Op Code = IN
Octal Op Code = 114

To initiate input on a specific channel and designate the input buffer area.

OC OP1 OP2

114 AR/I B

OPERATION: Initiates an input of data from a peripheral device, using the channel
specified in the OP1 item and storing the data in the buffer area speci
fied in the OP2 item, 'which is defined in the SOAT by its first address

and last address. The OP2 buffer descriptor is transferred to a channel
control register and a channel designator is set to ACTIVE. In the chan
nel control register, the first and last addresses are entered in the
current address register and the last address register, respectively.

EXAMPLE:

The next instructions are executed while the characters are received from

the peripheral device and stored in the buffer. After each character is
stored in the buffer, the current address register is compared to the last
address register and then incremented by one. When they are equal, the in
put operation is terminated and the channel designator is set to I!~ACTIVE.

Upon termination, the current address register = last character address
+ 1, and the last address register = last address.

The channel designator is also set to INACTIVE when a Function .Acknow

ledge is received from the peripheral.

The I/O parity condition designator is set when an odd-parity error is
detected on input data.

For a complete explanation, see PROCESSOR PROGRArc1Mrr~G rr~ r.1ACHrr~E CODE,

Form r~o. M-2269.

OC OP1 OP2

114 241 303

OP1 Item 41 of Active Record 2 contains the channel number.

OP2 Item 3 of Active Record 3 contains the input buffer limits.

1-68

PURPOSE:

FORMAT:

li~PUT /OUTPUT

Initiate Output On Channel
Mnemonic Op Code = OUT

Octal Op Code = 115

To initiate output on a specific channel and designate the output buffer
area.

OC OP1 OP2

115 I AR/ I B

OPERATION: Initiates an output of data from the output buffer specified in OP2 to a
peripheral device on the channel specified in the OP1 item. The OP2 buf
fer is defined in the SOAT by its first address and Zast address + 1.

Ourin~ execution of this instruction, these addresses are transferred to

a channel control register and a channel designator is set to ACTIVE.

EXAMPLE:

The first and last + 1 addresses are entered in the current address regis

ter and the last address register, respectively, of the channel control

regi s ter.

The next instructions are executed, while the characters are transferred
from the buffer to the peripheral, with an odd-parity bit generated for
each byte. Before each character transfer, the current address register
is compared to the last address register and then incremented by one.

When they are equal, the operation is terminated and the channel designa
tor is set to INACTIVE.

The channel designator is also set to INACTIVE when a Function Acknow
ledge is received from the peripheral. The channel control register is
then:

current address register = last address + 2
last address regi s ter = last address + 1

OC OP1 OP2

115
1

145 114

OP1 Item 45 of Active Record 1 contains the channel number.

OP2 Item 14 of Active Record 1 contains the output buffer limits.

1-69

PURPOSE:

FORMAT:

lf~PUT jOUTPUT

Initiate Output Reverse
Mnemonic Op Code = OTR

Octal .Op Code = *116

To initiate output reverse on a specific channel and to designate the
output buffer area.

OC OP1 OP2

116 I AR/I B

OPERATION: OP2 specifies an output buffer. Data output through the channel
specified by OP1 is initiated. After each character transfer to the
peripheral, the last address of the channel buffer control word is
decremented until the first address - 1 and last address match.
Operations are then terminated by resetting the channel designator.
OP2 defines the buffer the same way as in the INR instruction.

1-70

GENERAL PURPOSE

The General Purpose instructions include the following:

• Rename (1-72)
• Store Designators (1-73)
• Load Designators (1-74)
• Store Tally Counter (1-75)
• Load Tally Counter (1-76)

• Halt (1-77)
• Set Display Indicators (1-78)
• No Operation - Leave Gap (1-79)
• Clear Display Indicators (1-80)
• Load Storage Descriptor Pointer (1-81)
• Load Active Record 1, 2 or 3 (1-82)

1-71

PURPOSE:

FORMAT:

GENERAL PURPOSE

RENAME
Mnemonic Op Code = RN

Octal Op Code = 000

To change or reset a record or buffer address descriptor in the SOAT.

OC OPI OP2 "OC OPI OP2

000 R R or 000 B B

OPERATION: The address descriptor in the SOAT for the OP2 record or buffer is re
placed by the OPI record or buffer address descriptor. This instruction
is used to restore a buffer descriptor to its original contents follow
ing an Extract or Append type of instruction, since the starting ad
dress of the descriptor is incremented to maintain a current address
pointer during the execution of these instructions and is therefore no
longer avai 1 abl e. Note that a. data move to or from an SOAT entry acts
as if the SOAT entry is a 4-byte data item.

EXAMPLE: OC OPI OP2

000 002 010 When this instruction is executed,

SOAT SOAT
Before After

000 300 Buffer 2 descri ptor 000 300
------- --- - - - --

000 357 000 357
will

.change

000 357 Buffer 10 descriptor to read 000 300

000 357

thereby restoring (renaming) it to its original value.

1-72

PURPOSE:

FORMAT:

GENERAL PURPOSE
Store Designators

Mnemonic Op Code = sro
Octal Op Code = *124

To store the status of the condition designators into a specified item.

OC OP1

124 AR/I

OPERATION: One byte of data~ representing the present status of the designators,
is written into the leftmost byte of the item specified by OPI.

EXAMPLE:

I/O Pa
Memory
Arithm
Arithm
BDMA P

Greate
Abnorm
Equal

OPI
before

OP1
after

rity
Parity ...

etic Error
etic Overflow
arity
r Than
al Edit Error

OC OP1

124 317

1716151413121110 I
J

Bit positions
of condition
designators

~ Item 17 of Active Record 3

~ Item 17 of Active Record 3
-assumi ng the Equal and r~emory Pari ty
designators are set.

1-73

PURPOSE:

FOR~~AT :

GENERAL PURPOSE

Load Designators

Mnemonic Op Code = LD
Octal Op Code = *126

To set the condition designators according to the bit pattern of the
specified item.

OC OP1

126 AR/I

OPERATION: The leftmost item of OP1 forces the designators to an identical bit
pattern.

EXAMPLE:

I/O Pa
Memory
Arithm

Arithm
BDMA P
Greate

Abnorm
Equal

rity
Parity

etic Error
etic Overflow
arity

r Than

a 1 Ed it Error

OC OPI

126 I 320

l7 J61514/312111 01

I
Bit positions
of condition
designators

OP1 ~ Item 20 of Active Record 3

{ before 1
0 0 o. 0 0 0 0 a 1

Designators

10 after 0 1 1 0 0 0 a I
The Arithmetic Error and Arithmetic Overflow designators are set.

1-74

PURPOSE:

FORMAT:

GENERAL PURPOSE
Store Tally Counter

Mnemonic Op Code = STT
Octal Op Code = *134

To store the contents of the tally counter into a specified item.

OC OP1

134 I AR/I

OPERATIO~I: The 16 bit positions of the tally counter are stored into the leftmost
two bytes of the OP1 item. Se~ Appendix 0 for the effect of instruc-
tion execution on-Tally Counter.

EXAMPLE: OC OP1

134 107

Tally Counter = 137
1

276

OPI 224 011
1

377
before

Item 7 of Active Record 1

OPI 137 276 1377
after

1-75

PURPOSE:

FORMAT:

GENERAL PURPOSE

Load Tally Counter

Mnemonic Op Code = LT
Octal Op Code = *136

To set the tally counter according to the bit pattern of specified item.

OC OP1

136 AR/I

OPERATION: The leftmost two bytes of the item specified by OP1 force the tally

counter to an identical bit pattern. See Appendix 0 for the effect
of instruction execution on Tally Counter.

EXAMPLE: OC OP1

136 221

OPI 131 I 246
1

012 Item 21 of Active Record 1"\ c.

{ before I 0 0 0 0 0 0
Tally Counter

I after 1 3 1 2 4 6

1-76

GENERAL PURPOSE
HALT

Mnemonic Op Code = H
Octal Op Code = 143

PURPOSE: To stop the execution of instructions.

FORMAT: OC

~
OPERATION: Halts the execution of instructions, but the I/O operations can continue

until the buffer terminates. The STOP indicator on the PROCESSOR STATUS
panel is illuminated. The instruction execution sequence can be resumed
by pressing the RUN switch on the control panel.

1-77

PURPOSE:

FORMAT:

GENERAL PURPOSE
Set Display Indicators
Mnemonic Op Code = SOl

Octal Op Code = 146

To turn on one or more display indicators.

DC OP1

146 AR/I

OPERATION: The display indicators are turned on by the presence of a one ("1")
bit in the corresponding position of the I-byte item of OP1.

EXAMPLE: 1 ffoofffo Display indicators before

110101101 OP1 item

I ofoooofo Display indicators after

t it Turned on

1-78

PURPOSE:

FORMAT:

GENERAL PURPOSE
No Operation - Leave Gap
Mnemonic Op Code = GAP

Octal Op Code = *147

To allow a program delay.

OC

147 . I
OPERATION: The program is delayed by 1 microsecond (the time it takes to go through

a P-sequence).

1-79

PURPOSE;

FORMAT:

GENERAL PURPOSE

Clear Display Indicators
Mnemonic Op Code = COl

Octal Op Code = 156

To turn off one or more display indicators.

OC OPI

156 AR/I

OPERATION: The display indicators are turned off by the presence of a one ("111)

bit in the corresponding position of the I-byte item of OPI.

I ffoofffo I Display indicators before

110110010 I OPI item.

I fffffffo I Display indicators after

11 Turned off

1-80

GENERAL PURPOSE
Load Storage Descriptor Pointer

Mnemonic Op Code = LSP
Octal Op Code = 161

PURPOSE: To declare another SDAT active.

FORMAT: DC DP1

161 SOP

OPERATIO~: The OPI storage descriptor pointer is loaded over the c~rrent pointer
in address 000-000 and 000-001S' thereby activating a new SDAT.

1-81

PURPOSE:

FORMAT:

GENERAL PURPOSE
Load Active Record It 2t or 3

Mnemonic Op Code = LRl, LR2, or LR3
Octal Op Code = 165 t 171, or 175

To declare a record active.

OC

165,171
or 175

OPI

R

OPERATION: Loads the active record register with the OPI record number, which is
an item in the SOAT and contains the record descriptor for the record
area in storage. A record must be declared active before it can be
referenced by any other instructions. Records continue to be "active"
until a succeeding LR instruction activates another record in its
place (1, 2, or 3).

EXA~1PLE :

Appendix B, Programming Active Records, provides additional information
for using the Load Active Record instructions.

OC

171

OC 171

OPl) 011

OPI

011

Load Active Record 2

with record 11 of the SOAT, which indicates
the first address of the record in storage and
the first address of its lOT.

1-82

LOGICAL

The logicJl instructions include the following:

• OR (Exclusive) (1-84)
• Longitudinal Redundancy Check (1-85)

• OR (Inclusive)(1-86)
• Logical AND (1-87)

PURPOSE:

FORMAT:

LOGICAL SET
OR (Exclusive)

Mnemonic Op Code = X
Octal Op Code = *160

To logically OR (Exclusive) two strings of data and store the result
into a defined item.

OC OPI OP2 OP3

160 AR/I AR/I AR/I I
OPERATION: An Exclusive OR function is performed between the data contained in the

leftmost bytes of the OP1 and OP2 items. The result is stored left-
aligned into the OP3 item. This function continues until one of the
three operands is ended.

Exclusive OR Operation: 1 1 0 0
101 0
o 1 1 0

EXAMPLE: OC OPl OP2 OP3

160 201 202 203

OPl ~ 11 1 000 1 o 1 I Item 1 of Active Record 2

OP2 ~ 10 1 1 001 1 IJ Item 2 of Active Record 2

OP3 §] 11 1 1 1 1 1 1 1 I Item 3 of Active Record 2
before

OP3 ~ 11 o 1 o 0 0 1 01 Item 3 of Active Record 2
after

1-34

PURPOSE:

FORMAT:

LOGICAL SET
Longitudinal Redundancy Check

Mnemonic Op C?de = RCK
Octal Op Code = *162

To perform successive Exclusive OR operations to a string of data and
to store the result into a defined item.

OC OP1 OP2

162 AR/I AR/I

OPERATION: An Exclusive OR function is performed between the leftmost byte of the
OP1 item and the second leftmost byte. An Exclusive OR is then per
formed between this result and the third leftmost byte of the OP1 item.
This function continues until the end of the OD1 item is reached. The
result is then stored into the OP2 item.

Exclusive OR Operation: 1 1 0 0
1 0 1 0
011 0

EXAMPLE: OC OPl OP2

162 302 207

OP1 Item 2 of 1Q100111
Active Record 3 111 1 0 1 1 1

o 1 0 1 0 0 0 0

OP2 000 Item 7 of
before Active Record 2

OP2 120 Item 7 of
after Active Record 2

1-85

PURPOSE:

FORMAT:

LOGICAL SET
OR (Inclusive)

Mnemonic Op Code = 0
Octal Op Code = *164

To logically OR (Inclusive) two strings of data and store the result
into a defined item.

OC OPI OP2 OP3

164 I AR/I AR/I AR/I

OPERATION: A Logical OR function'is performed between the data contained in the
leftmost bytes of the OPI and OP2 items. The result is stored left
aligned into the OP3 item. This function continues until one of the
three operands is ended.

Inclusive OR Operation: 1 100
1 0 1 0
1 1 1 0

EXAr~PLE : OC OPI OP2 OP3

164 301 202 107

OPI ~ I 1 1 1 1 001 01 Item 1 of Active Record

OP2 ~ I 1 o 000 0 1 1 I Item 2 of Active Record

OP3 [EJ I 1 001 011 1 I Item 7 of Active Record
before

OP3 ~ [1 1 1 1 001 1 I Item 7 of Active Record
after

1-86

3

2

1

1

PURPOSE:

FORMAT:

LOGICAL SET
Logical AND

Mnemoni c Op Code = tJ

Octal Op Code = *166

To logically AND two strings of data and store the result into a
defined item.

oc OPI OP2 OP3

1.66 AR/I AR/I AR/I I
OPERATION: A logical AND operation is performed between the data contained in

the leftmost bytes of the OPI and OP2 items. The result is stored
left-aligned into the OP3 item. This function continues until one of
the three operands is ended.

Logical AND Operation:

OC OPI

166 102

OPI [ill]

OP2 13551

OP3 10001
before

OP3 [ill
after

OP2

203

10 1

11 1

1 1 0 0

101 0
1 000

OP3

306

1 o 1 o 1 11

1 o 1 1 0 11

10 0 0 0 0 0 0 01

10 110 1 0011

1-37

Item 2 of Active Record 1

Item 3 of Active Record 2

Item 6 of Active Record 3

Item 6 of Active Record 3

BINARY ARITHMETIC

During binary arithmetic operations, one of two error indicators may be illumi
nated on the operator panel and the corresponding condition designator set:

• Arithmetic overflow - when the receiving item is 1 byte too small and the
sign of the number is lost (condition designator bit 4).

• Arithmetic Error - when the receiving item is 1 or more bytes too small
for the operation (condition designator bit 5).

Whenever either of these conditions occurs, the arithmetic operation is
immediately terminated.

Uegative binary numbers must be coded in two's complement form.

The sign of a binary number is indicated by a 0 (for +) or a 1 (for -) in
the MSB of the MSBY.

The Binary Arithmetic instructions include the following:

• Add Binary (1-89)
• Subtract Binary (1-90)
• Add Literal Binary (1-91)
• Subtract Literal Binary (1-92)

1-88

PURPOSE:

FORt1AT:

BINARY ARITHMETIC
Add Binary

Mnemonic Op Code = AB
Octal Op Code = 041

To add two binary numbers.

OC OP1 OP2 OP3

041 AR/I AR/I AR/I I
OPERATION: The OP1 item is added to the OP2 item and the sum stored in the OP3

item.

EXA~1PLE :

Condition Designators:

OP1

OP2

OP3

Arithmetic overflow is set when the OP3 item is too small by one
byte and the sign bit is lost.

Arithmetic error is set when the add operation cannot be completed
for all bytes in the OP1 or OP2 items because the OP3 item ;s
too small.

101111111 111001110 I
I 01001101 I

I 00000000 I 10000000 I 00011011 I after the addition

1-39

PURPOSE:

FORMAT:

BINARY ARITHMETIC
Subtract Binary

Mnemonic Op Code = SB
Octal Op Code = 045

To subtract one binary number from another.

OC OP1 OP2 OP3

045 AR/I AR/I AR/I I
OPERATION: The OP2 item is subtracted from the OP1 item and the difference is

stored in the OP3 item.

EXAMPLE:

Condition Designators:

OP1

OP2

OP3

Arithmetic overflow is set when the OP3 item is too small by one
byte and the sign bit is lost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OP1 and OP2 item because the OP3
item is too small.

100001101 01011101

01110111

100001100 11100110 after the subtraction

1-90

PURPOSE:

FORMAT:

BINARY ARITHMETIC
Add Literal Binary

Mnemonic Op Code = ALB
Octal Op Code = 051

To add a binary number contained in the instruction itself (literal)
to a binary number in core storage.

OC OP1 OP2 OP3

051 AR/I AR/I L

OPERATION: The OP3 binary number is added to the OP1 item and the sum stored in
the OP2 item.

EX.LV1PLE:

Condition Designators:

OP1

OP2

OP3

Arithmetic overflow is set when the OP2 item is too small by one
byte and the sign bit is lost.

Arithmetic error is set when the add operation cannot be completed
for all bytes in OP1 item because the OP2 item is too small.

100000001 111001110 I
I 01001101)

100000010 I 00011011 I after the addition

1-91

PURPOSE:

FORMAT:

BINARY ARITHMETIC

Subtract Literal Binary

Mnemonic Op Code = SLB
Octal Op Code = 055

To subtract a binary number contained in the instruction itself
(literal) from a binary number in core storage.

OC OP1 OP2 OP3

055 AR/I AR/I L

OPERATION: The OP3 binary number is subtracted from the OP! item and the dif
ference stored in the OP2 item.

EXAMPLE:

Condition Designators:

OP1

OP2

OP3

Arithmetic overflow is set when the OP2 is too small by one byte
and the sign is lost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OP1 item because the OP2 item is
too small.

00000001 111101110

I 00110110

00000001 110111000 I after the subtraction

1-92

DECIMAL ARITHMETIC

During decimal arithmetic operations, one of two error indicators may be
illuminated on the operator panel and the corresponding condition designator set:

• Arithmetic overflow - when the receiving item is 1 byte too small and the
carry is lost (condition designator bit 4).

• Arithmetic error - when the receiving item is 1 or more bytes too small
for the operation (condition designator bit 5).

Whenever either of these conditions occurs, the arithmetic operation is
immediately terminated, and the results in the receiving item may not be represented
in "absolute values ll but in "ten1s complement" notation. Normally, the sign of the
number is corrected and the decimal digits changed to their absolute value after
the add operation. A ten's complement number is obtained by:

• subtracting the absolute value

from

• 10 raised to a power equal to the number of digits in the absolute value.

For example, the ten's complement for 456 is 103 = 1000, and then
1000 - 456 = 544.

The sign of a number is indicated by the sign zone of the least significant
digit.

The Decimal Arithmetic instructions include the following:

• Add Decimal (1-94)

• Subtract Decimal (1-95)

• Add Literal Decimal (1-96)

• Subtract Literal Decimal (1-97)

1-93

PURPOSE:

FORMAT:

DECIMAL ARITHMETIC
Add Decimal

Mnemonic Op Code = A
Octal Op Code = 043

To add two decimal numbers.

OC OPI OP2 OP3

043 AR/I AR/I AR/I I
OPERATION: The contents of the OPI item are added to the contents of the OP2 item

and the sum is stored'in the OP3 item. The numbers in the OPI and OP2
items are represented in decimal form.

EXAMPLE:

Condition Designators:

OPI

OP2

OP3

Arithmetic overflow is set when the OP3 item is too small by one
byte and the carry is lost.

Arithmetic error is set when the add operation cannot be completed
for all bytes in the OPI or OP2 item because the OP3 item is too
small.

7 1 I +4

4 I +3

o 7 5 I· +7 after the addition

1-94

PURPOSE:

FOR~·1AT :

DECH1AL ARITHMETIC
Subtract Decimal

r·1nemoni c Op Code = S
Octal Op Code = 047

To subtract one decimal number from another.

OC OPl OP2 OP3

047 AR/I AR/I AR/I]

OPERATION: The contents of the OP2 item are subtracted from the OPl item and the
difference is stored in the OP3 item. The numbers in the OPl and OP2
items are represented in decimal form.

EXAMPLE:

Condition Designators:

OPI

OP2

OP3

Arithmetic overflow is set when the OP3 item is too small by one
byte and the carry is lost.

Arithmetic error ;s set when the subtract operation cannot be
completed for all bytes in the OPI and OP2 item because the OP3
item is too small.

6 -3

8 +3

o 1 4 -6 after the subtraction

1-95

PURPOSE:

FORMAT:

DECIMAL ARITHMETIC
Add Literal Decimal

Mnemonic Op Code = AL
Octal Op Code = 053

To add a decimal number contained in the instruction itself (literal)
to a decimal number in core storage.

OC OPl OP2 OP3

053 I ARTI I AR/ I L

OPERATION: The contents of the OP3 literal are added to the contents of the OPl
item, and the sum is stored in the OP2 item. The OP1 item and OP3
literal are decimal numbers.

EXAMPLE:

Condition Designators:

OP1

OP3

OP2

Arithmetic overflow is set when the OP2 item is too small by one
byte and the carry is lost.

Arithmetic error ;s set when the add operation cannot be completed
for all bytes of the OPl item because the OP2 item is too small.

4 +3

o 4 I +8 I after the addition

1-96

PURPOSE:

FORf1AT:

DECIMAL ARITHMETIC
Subtract Literal Decimal

t1nemon i c Op Code = SL
Octal Op Code = 057

To subtract a decimal number contained in the instruction itself
(literal) from a decimal number in core storag.e

OC OPl OP2 OP3

057 AR/I AR/I L

OPERATION: The contents of the OP3 literal are subtracted from the contents of
the OPl item, and the difference ;s stored in the OP2 item. The OPI
item and OP3 literal are decimal numbers.

EXAMPLE:

Conditional Designators:

'OPI

OP3

OP2

Arithmetic overflow is set when the OP2 item is too small by one
byte and the carry is lost.

Arithmetic error is set when the subtract operation cannot be
completed for all bytes in the OPl item since the OP3 item is
too small.

4 1+61
GU

o 4 1+2 I after the subtraction

1-97

SEQUENTIAL EDITING

EDIT IN TRANSMIT

The Sequential Editing instructions can edit large volumes of data as they are
transferred from peripheral to peripheral and when the units of data:

• Consist of more than 256 characters (the maximum record size),

• Cannot be assigned a predetermined number of characters,

• Consist of sub units of data that must be handled sequentially,

or

• Are reduced in size by removing special characters during editing.

The Sequential Editing instructions consist of three groups, which:

• Compress data into smaller groups after eliminating nulls and specified
characters,

• Append portions of data to the build-up of a larger block, and

• Extract portions from large data blocks.

COMPRESS

The Compress instructions sequentially copy all of the contents of one record
item into another, while excluding null characters and the character ~pecified in
the literal operand during the copying operation. In addition, they either left-
or right-align the copied characters into the receiving item and, fill in the

remaining item locations with the character specified in the second literal operand.

APPEND

The Append instructions sequentially copy record items or all of a record into
a buffer, and two of them provide for excluding nulls and a specified character

during the copying operation. These instructions are very useful for the construc
tion or build-up of large blocks of data from smaller, well-structured items, such
as when writing onto magnetic tape.

EXTRACT

The Extract instructions sequentially copy part or all of a buffer area into
a record item, with the fill-in of a specified character in one of the instructions.
These instructions are primarily used for extracting record-size portions from the

input buffer containing a large data block, such as received from magnetic tape input.

1-93

The Sequential Editing instructions include the following:

• Compress I tern, Left-Al i gn, Fi 11 (1-100)
• Compress Item, Right-Align, Fill (1-101)
• Append, Right Eliminate (1-102)
• Append, Advance (1-103)
• Append, Left Eliminate (1-105)

_. Extract Variable Length Item, Fill (,1-107)

• Extract Previous Item (1-111)
• Extract Item (1-112)
• Extract Item, Advance (1-114)

1-99

PURPOSE:

FOR~1AT :

SEQUENTIAL EDITING
Compress Item, Left-Align, Fill

Mnemonic Op Code = CP
OctalOp Code = 014

To eliminate the null and a specified character during the copying of
one item into another, with left-alignment and character fill.

OC OP1

014 AR/I

OP2

AR/I

OP3

L.
1

OP4

OPERATION: A copy of the contents of the OP1 item is moved left-aligned into the
OP2 item. The null characters and characters which match the OP3
literal character are not transferred. Any remaining locations of OP2
are filled with the OP4 literal character. The operation terminates
when either all of OP1 is transferred or OP2 becomes full.

EXAMPLE: No. 1

OP1

OP2

OP3

OP4

OP2
after

No. 2

OPI

OP2

OP3

OP4

OP2
after

I$XYZn$E$]

I ZZZZZZZ f

[]
EJ
I XYZE*** I

I$XYZn$E$1

[ill
ill
EJ
@J

1-100

PURPOSE:

FORMAT:

SEQUErJTIAl EDITING
Compress Item, Right-Align, Fill

Mnemonic Op Code = CPR
Octal Op Code = 015

To eliminate the null and a specified character during the copying
of one item into another, with right-alignment and character fill.

OC OPI

015 AR/I

OP2

AR/I

OP3

l.
1

OP4

OPERATION: A copy of the contents of the OPI item is moved right-aligned, into
the OP2 item. The null characters and characters which match the OP3
literal character are not transferred. Any remaining locations of OP2
are filled with the OP4 literal character. The operation terminates
when either all of OPI is transferred or OP2 becomes full.

EXA~·1PlE : No. 1

OPI

OP2

OP3

OP4

OP2
after

No. 2

OPI

OP2

OP3

OP4

OP2
after

I$XYZn$E$1

I ZZZZZZZ I
[]
0-
I ***XYZE I

I$XYZn$E$1

[ill
[!J

E1
~

1-101

PURPOSE:

FORMAT:

SEqUENTIAL EDITING

Append, Right-Eliminate
Mnemonic Op Code = APR

Octal Op Code = 120

To select a record item and copy the data into a buffer.

OC OP1 OP2 OP3

120 AR/I B

OPERATION: The trailing characters of the OP1 item that match the literal are
eliminated. The remainder of OP1 is copied into the OP2 buffer, left
aligned, starting at the current address pointer of the buffer. The
current address pointer for the buffer is incremented by the number of
characters transferred.

EXAMPLE:

Condition Designators:

OP1

EQUAL is set when the end of the OP2 buffer is reached concurrently
with the end of the OP1 item. The current address pointei is
advanced. The execution of another Append instruction will not

set the EQUAL or the ABNORMAL EDIT designations.

ABNORMAL EDIT is set when there are more characters from OP1 to
be transferred than the OP2 buffer can hold. The current ad

dress pointer is not advanced. OP2 contains the partial transfer.

OP2 I QRST***** I
LPb

OP3 lIJ
r-----~

OP2
after

Normal operations: no designators are set

1-102

PURPOSE:

FORMAT:

SEQUENTIAL EDITI~G
Append, Advance

Mnemonic Op Code = APA
Octal O~ Code = 121

To copy the data from a record item into a buffer.

OC OP1 OP2

1121 1 AR/I B

OPERATION: A copy of the OPl item is moved into the OP2 buffer. The current ad
dress pointer. for the buffer is incremented by the number of characters
transferred.

Condi ti on Desi gna. -:'ors:

EXAMPLES: No.1

EQUAL is set when the end of the OP2 buffer has been reached con
currently with the end of the OPl item. The current address
pointer is advanced. The execution of another Append instruction
wi 11 not set the EQUAL or the ABNORt1AL EDIT desi gna ti ons.

ABfJORMAL EDIT is set when there are more characters from OPI to
be transferred than the OP2 buffer can hold. The current address
pointer is not advanced. OP2 contains the partial transfer.

OPI ~
OP2

OP2
after

No.2

OP1 12345678\

OP2

OP2
after

ABC123456781

lp
a

Normal.operation: no designators are set

End of buffer operation: EQUAL is set. Pa points to the location after that of the
"8" character.

1-103

No. 3

OPI

OP2

OP2
after

~
I ABCDEF[I

Pb

Pa

Abnormal operation: ABNORMAL EDIT is
set. The entire OPI item cannot be
moved into the remaining OP2 buffer
space.

PURPOSE:

FORf·1AT:

SEQUENTIAL EDITING
Append, Left-Eliminate
Mnemonic Op Code = APE

Octal Op Code = 122

To select a record i tern and copy the data "i nto a buffer.

OC OP1 OP2 OP3

AR/I B L

OPERATION: The leading characters of the OP1 item that match the literal are
eliminated. The remainder of OP1 is copied left-aligned into the OP2
buffer. The current address pointer for the buffer is incremented by
the number of characters transferred.

Condition Designators:

EXAMPLES: No.1

EQUAL is set when the end of the OP2 buffer ;s reached concurrently
with the end of the OP1 item. The current address pointer is
advanced. The execution of another Append instruction will not

set the EQUAL or the ABNORMAL EDIT designations.

ABNORHAL EDIT is set when there are more characters from OPI to
be transferred than the OP2 buffer can hold. The current address
pointer is not advanced. OP2 contains the partial transfer.

OP1 I $$$AB$C I
OP2

OP3 [I]
OP2
after

1-105

No.2

OP1

OP2

OP3

OP2
after

I $$$$$$1

I rCDEF I
Pb

Both are normal operations: no designators

are set.

1-106

PURPOSE:

FOR~·1AT :

SEQUENTIAL EDITING
Extract Variable Length Item, Fill

Mnemonic Op Code = EXV
Octal Op Code = 130

To select a portion of a buffer, as indicated by a sentinel
and copy the data into a record item with a character fill.

OC OP1 OP2 OP3 OP4

I 130 B AR/I Ls Lf

character,

OPERATION: A copy from the OP1 buffer area is moved left-aligned into the OP2
item starting at the location in the current address pointer of the
buffer and continuing up to the location before the "sentinel" literal
(L s)' The remaining locations of OP2 are filled with the literal (Lf).
The current address pointer of the buffer is incremented to the address
following the sentinel literal. The sentinel is not transferred. If
the sentinel is the last byte in the buffer, the current address
pointer is advanced only to the address of the sentinel itself.

Condition Designators:

EQUAL is set when the end of the OP1 buffer ;s reached by the time
the OP2 item is filled. The current ,address pointer of the buffer
is not advanced. The remaining positions of the OP2 item are
'filled-in with the OP4 literal.

ABNORMAL EDIT is set when no sentinel is encountered in the OP1
buffer by the time the OP2 item is filled. The current address
pointer of the buffer is not advanced .. OP2 contains the charac
ters already transferred.

NOTE.

When EQUAL alone is set, the current
. address pointer is at the last byte of

the buffer, which is a sentinel. OP2
will contain only the fill character.
Further Extract-Variable instructions
will have the same result.

1-107

EXAMPLES: No.1

OPI

OP2

OP3

OP4

OP2
after

When ABNORMAL EDIT alone is set,
OP2 is too short to receive all
characters in OPI before the sentinel
character. OP2 contains the partial
transfer.

When both the EQUAL and the
ABNORMAL EDIT designators are
set, OPI did not have any re
maining sentinel characters in it.

I ******* I
D
~
I ABCnnnn I Normal operation: no designators

are set. The OPI pointer is moved
one location past the comma.

For the follwoi ng exampl es, OP3 = D and OP4 = 0
No.2

OPI

OP2
after

1-108

Abnormal operation: ABNORt·1AL EDIT
is set. The OPI pointer is not
moved. The ~nd of OP2 is reached
prior to finding a comma in OPI.

No.3

OPl

OP2 I ****)
OP2
after

No. 4 --.
OPl

OP2

OP2
after

No.5

OPl

B
~

OP2 I ***1
OP2
after

Pb

Normal operation: no designators
are set. The OPI pointer is moved
one location past the first comma
encountered.

Normal operation: no designators
are set. No characters are trans
ferred from OPI to OP2, since the
comma is found immediately. The
OPI pointer is moved one position
past the comma.

Normal operation: no designators
are set. The pointer is at the
comma, since it is the last charac
ter in OPI.

No. 6

OPl ABC,1234"XY,

P = b Pa

OP2 G;]
OP2 ~ End of buffer operation: EQUAL ;s
after set. This implies that all of the

characters have been copied from
OPl. The pointer is not moved.

No. 7

OPl

Pb = Pa

OP2 I **** I
OP2 I XYnn I Abnormal operation: EqUAL and
after ABNORt1AL EDIT are set. No comma

was found at the end of OPI.

1-110

PURPOSE:

FORMAT:

SEQUENTIAL EDITING
Extract Previous Item
'·1nemonic Op Code = EXP

Octal Op Code = 131

To select a portion of a buffer and copy the data into a record item.

OC OPI OP2

1131 B AR/I

OPERATION: A copy from the OPI buffer area is moved right-aligned into the OP2
item and starting from the current address pO'inter-l clnd decrementing
it to the last character transferred. The ooeration 'is termoinated
when OP2 is full. No designators are set.

EXAMPLE: OPI

OP2

OP2
after

1-11]

PURPOSE:

FORMAT:

SEQUENTIAL EDITING

Extract Item
Mnemonic Op Code = EX

Octal Op Code = 132

To copy the characters from a buffer area into a record item, without

incrementing the current address pointer.

OC OP1 OP2

132 B AR/I

OPERATION: A copy of the OP1 buffer, from the location in the current address
pointer, is moved left-aligned into the OP2 item. The current address
pointer is not changed: Pa = Pb. The operation is terminated when

the end of OPl or OP2 is reached.

Condition Designators:

EQUAL is set when the end of the OP1 buffer is reached concurrently

with the end of the OP2 item.

EXAMPLES: No.1

OP1

OP2

OP2
after

No.2

ABNOR~1AL EDIT is set when the end of the OP1 buffer is reached
prior to the end of the OP2 item.

qBCDEF I
P = P b a

Normal operation: no designators
are set.

OPI I ABC~EF I
r

Pb = Pa

OP2 B
OP2
after

EQUAL is set.

1-112

No.3

OPl

OP2

OP2
after

****~* I
I ABCDE* I

1-113

ABNORMAL EDIT is set. There are
not enough characters in OP1 to
fill OP2.

SE0UENTIAL EDITING
Extract Item, Advance

Mnemonic Op Code = EXA
Octal Op Code = 133

PURPOSE: To copy the characters from a buffer area into a record item.

FORMAT: OC OP! OP2

133 B AR/I

OPERATION: A copy of the OP! buffer, from the location in the current address
pointer, is moved left-aligned into the OP2 item. The current address
pointer of the buffer is incremented to the location following the
last character transferred. The operation is terminated when either
the end of the OP! buffer is reached or the OP2 item is full.

Condition Designators:

EXAMPLES: No.1

OP1

OP2

OP2
after

EQUAL is set when the end of the OP1 buffer is reached concurrently
with the end of the OP2 item. The current address pointer is
advanced. The execution of another Extract Item, Advance
instruction will not set the EQUAL or ABNORMAL EDIT designators.

ABNORMAL EDIT is set when the end of the OP! buffer is reached
prior to the end of the OP2 item.

@D.

1-!14

No.2

OP

OP2

OP2
after

No.3

OP1

OP2

OP2
after

**** I
sDEs

ABC*

1-115

End of buffer operation: EQUAL is
set. The pointer is adjusted to
one more than the last location in
OP1.

Abnormal operation: ABNORMAL EDIT
is set. There are not enough
characters in OPI ~o fill OP2.

INTERRUPT

Interrupt-related instructions are used to interpret, control and process
events (interrupts) that divert t~? processor from main program execution. The
Interrupt instructions include the following:

• GOTO on Service Request (1-117)
.• GOTO on Channel Interrupt (1-118)

• Swap States (1-119)
• Set Interrupt Lockout (1-120)
o Clear Interrupt Lockout (i-121)

• Interrupt Mask (1~122)

• Interrupt Branch GOTO (1-124)

Refer to Appendix A, Interrupt Processing, for a detailed description for
using the interrupt set of instructions.

1-116

PURPOSE:

FORMAT:

INTERRUPT
GOTO On Service Request
Mnemonic Op Code = GSI

Octal Op Code = *113

To branch to a subroutine if a service request for a specified channel
has been raised prior to this instruction.

OC OPl Branch to

AR/I address

OPERATION: OPI specifies the channel that is checked for a service request (see
page A-6). If a service request is stored in its service request
storage and the channel specified by OPI matches the requested one,
the execution of the GSI instruction forces a branch to the address
specified in OP2 and OP3. If a request is not present, the following
instruction is executed.

EXA~~PLE : OC OPI Branch to

113 234 002 I 300 I P-Bias = 010-000

OP1 ~o a 1 1 0 1 Item 34 of Active Record 2

Location 010-070 contains the above instruction and it is being
executed. If a service request is stored for channel 6, execution
is resumed at location 012-300; otherwise, it continues with 010-074.

1-117

PURPOSE:

FORMAT:

INTERRUPT
GOTO On Channel Interrupt

(Monitor Interrupt)

Mnemonic Op Code = GCI
Octal Op Code = *117

To branch to a specified address if a channel interrupt for a
specified channel has been monitored.

OC OP1 Branch to

1117 AR/ I I address I
OPERATION: If a'channel interrupt has been monitored prior to this instruction on

a channel specified in OP1, the interrupt is cleared and program
execution resumes at the specified address.

EXAMPLE:

Otherwise, the next program instruction is executed. The channel
interrupt is set whenever the channel goes inactive, such as when a
buffer is terminated.

OC OP1 Branch to

1117 104 I 006 I 230 I P-Bias = 010-000

OP1 10 0 00010 0\ Item 4 of Active Record 1

Location 011-224 contains the above instruction and it is being
executed. If a monitor interrupt is stored for channel 4, execution
is resumed at location 016-230 and the monitor interrupt is cleared;
otherwise, execution continues with 011-230.

PURPOSE:

FORMAT:

I
/

,I

OPERATION:

INTERRUPT
Swap States

Mnemoni c Op Code = S\~S
Octal Op Code = *154

To change the processor from worker state to executive state or from
executive state to worker state.

OC

~
The 502 Processor has two general states which are reflected in two
different sets of Active Records. The worker state uses core memory
locations 000-000 through 000-017 and the executive state uses 000-040
through 000-057 to store the Active Records.

In both states) the Program Control Block is the image of th~ st3te's

hardware set of Active Records. A Swap States instruction forces the
image of the alternate-state core Active Records into the hardware
Active Records, thereby eliminating the need to ha.ve two differ(~l1t

sets of hardware Active Records.

A Swap States instruction is executed immediately if the py~esent state
is the worker state. If the present stat~ is the executive state, th2

SWS instruction i~ not ~xecuted until the instruction following the
SWS instruction is perfonned, so that information can be retrieved frOiTI

the executive sta J:.: (such as an interrupt return address).

The hardware keeps track of its current state automatically. The
software keeps track by its design. Any power-up, restart, or P-start
forces the processor to the worker state.

1-119

PURPOSE:

FaRHAT:

INTERRUPT
Set Interrupt Lockout
Mnemonic Op Code = SIL

Octal Op Code = *155

To lockout all interrupts.

OC

~
OPERATION: This instruction causes all interrupts to be locked out. This condition

may only be cleared by a Clear Interrupt Lockout instruction or an
Interrupt Branch GOTO instruction. The storage of incoming interrupts
of any type is, however, not affected by this instruction.

1-120

PURPOSE:

FORMAT:

INTERRUPT
Clear Interrupt Lockout

Mnemonic Op Code = CIl
Octal Op Code = *157

To enable interrupts.

OC

@?]

OPERATION: The interrupt lockout is cleared in the hardware. However, all in
terrupts locked ,out prior to this instruction by an Interrupt Mask
instruction remain locked out.

1-121

PURPOSE:

FORMAT:

INTERRUPT
Interrupt t1ask

t~nemon i c Op Code = I ~1
Octal Op Code =*174

To selectively enable or disable interrupts by a specified mask.

OC OP1

1174 AR/I

OPERATION: The OP1 item defines a three-byte item mask; t1onitor, Service and
:Special interrupts. Each byte is bit encoded. A"zero" bit enables
the processor to honor the interrupt. A "oneil bit causes the pro
cessor to ignore the interrupt. The normal instruction sequence to
change the mask is:

SIL
IH desired-mask

The byte and associated bit assignments are as follows:

BIT MONITOR SERVICE SPECIAL
POSITION BYTE 1 BYTE 2 BYTE 3

(MSBY) (LSBY)

0 I/O Channel 0 I/O Channel ~ tlon-Operati ona 1 Sub-Op Code
1 I/O Channel 1 I/O Channel I' Not assigned
2 I/O Channel 2 I/O Channel 2 Delta Clock
3 I/O Channel 3 I/O Channel 3 Not assigned
4 I/O Channel 4 I/O Channel 4 t~ot assigned
5 I/O Channel 5 I/O Channel 5 Machine Interrupt
6 I/O Channel 6 I/O Channel 6 BDMA Channel 6
7 I/O Channel 7 I/O Channel 7 BDt·1A Channel 7

1-122

EXAMPLE: DC OP1

174 201

7 654 3 2 1 076 5 4 3 2 1 076 5 4 3 2 1 0

OP1 1 1 '0 0 0 1 1 1 1 00101 1 0 100 1 101 0
307 226 132

MONITOR INTERRUPTS Enabled Disabled

Channel 3 Channel fJ
Channel 4 Channel 1

Channel 5 Channel 2

Channel 6

Channel 7

SERVICE INTERRUPTS Enabled Disabled

Channe 1 fJ Channel 1

Channel 3 Channel 2

Channel 5 Channel 4

Channel 6 Channel 7

SPECIAL INTERRUPTS Enabled Disabled

Non-Operational BDt1A Channel
Sub-Op C,ode
Delta Clock
Machine Interrupt
BDt1A Channel 6 I

1-123

7

Binary
Octal

Item 1 of
Active
Record 2

PURPOSE:

FORMAT:

Mnemonic Op Code = GIR
Octal Op Code = *177

To return from an interrupt subroutine to the routine prior to the
branch, or back into a required routine, while also restoring the P
address needed for program execution. This P-address is read from a
push-down stack defined by OP1. The GIR instruction is normally pre
ceded by a Swap States instruction. This instruction is similar to
the GRT instruction except interrupts are enabled with this instruction.
Only those interrupts which are allowed by the interrupt mask are enabled

DC OP1

1177 B I

OPERATION: OP1 defines a push~down stack that contains the return address. Push
down buffer locations are two bytes long and contain the desired return
address. It is located at the current buffer address minus 1 and-minus 2

EXAMPLE: OC OP1

1-
177 P-Bias = 012-000

P-address before = 013-077
P-address after = 012-265

OP1
before

Pa
Pb

OP1
after

001

010-000
010-002

010-376

001

SDAT Entry

010-002 I

PUSH-DOHN
BUFFER

012-265
xxx-xxx

xxx-xxx

SDAT Entry

010-000

1-124

010-377 1

010-377

PUSH-DOWN BUFFER
DESCRIPTOR

PUSH-DOWN BUFFER
DESCRIPTOR

EXTERNAL EXECUTE INSTRUCTIO~I SET

The programmable funcl ions of the 5028 Processor are expanded by incorporatinq

additional hal"'dltJare modules. ~'iodules aY't~ available for the folloY/in~ functions:

G Multiply and Divide Decimal ~r Binary

8 Binary-to-Decimal and Deci~al-to-S~nary conversion.

~ Delta Clock (interruptinc-t i .. terval timer)
Q Pa ri ty Error Determi nati Ci ;"

~ External Execute Instruction Error Detection

These functions are implemented by using the External Execute instruction.

Thi") instruction contains' a sub-op code in addition to the normal operational code
(liS). The format of the External Execute instruction is as follows:

OC SUB-OP OPl OP2 OP3 OP4

1145 I XXX AR/I AR/ITAR/U ~~-_l

The External Execute instructions -j ncl ude the following:

~1ne.monic I Ooeration Code (OC) Sub-Op Code Instruction Page

LC 145 o o I!. Load Delta Clock 1-127
,."SEI 145 014 Store External Instruction Error 1-128
. ~-. (""'.,'!' 145 015 Store Channel Parity Error 1-131 ' ,:...) t. ;~

145 020 ~~u 1 tip 1 y B ina ry 1-132
';'cd 145 021 Multiply Literal Binary 1-133
DB 145 022 Divide Binary 1-134
DLB 145 023 Divide Literal Binary 1-135
HD 145 024 Multiply Decimal 1-136
~1LD 145 025 Multiply Literal Decimal 1-137
DO 145 026 Divide Decimal 1-138
DLD 145 027 Divide Literal Decimal 1-139
BTD 145 030 Binary to Decimal 1-140
DTB 145 031 Decimal to Binary 1-141
SDR 145 034 Store DecimaT Remainder 1-142
SBR 145 035 Store Binary Remainder 1-143

MULTIPLE/DIVIDE INSTRUCTIONS

The operation of mUltiply and divlde instructions is critical reqarding oper2
sizes, since no indication is given if the storage item for the result ;s too smal I.
The programmer must, therefore, make certain that the storage item has sufficient
1 ength.

The following formulas may be used to determine the operand size:

For Multiply:

@Ximum number I +
of digits in OP~

For D.ivide:

r;aximum number ~
~f digi ts in OP1J

UNUSED OPERANDS

I max i mum number I
of digits in OP2~ =

I maximum number of +1 =
digits in OP2 (afte
eliminatinq leading
zeros)

\

~umber of d;g;t~
L2. n product J

~umber ?f di9i~ tn quotlent J

Unused operand must specify valid operands because the processor generates the
addresses for these operands, even though they are not used. A value of 000 ;s
always valid.

1-·126

PURPOSE:

FOR~~AT:

EXTERNAL EXECUTE
Load Delta Clock

Mnemonic Op 'Code = LC
Octal Op Code = *145

Octal Sub-Op Code = 004

To load the Delta Clock with a time interval.

DC SUB-DC OP! OP2 OP3

145 004 AR/I ~--

OPl = 2-byte item containing an initial time interval
OP2 = Not used
OP3 = Not used

(in binary)

OPERATION: When this instruction is executed, the 2-byte time interval (OPl item)
is loaded into the Delta Clock. The loading of the clock initializes
the clock and the time interval is decremented by one every 100 micro
seconds (~0.5%). When the time interval has decremented to zero, a
class 3 interrupt occurs and the clock is deactivated. The Delta Clock
has a time range of 100 microseconds to 6.5536 seconds. The clock may
be deactivated at any time by loading it with a 2-byte binary zero; no
interrupt will occur.

1-127

PURPOSE:

FOR~1AT :

EXTERNAL EXECUTE
Store External Instruction Error

Mnemonic Op Code = SEE
Octal Op Code = *145

Octal Sub-Op Code = 014

To obtain and store the status and error data of Class 3 type interrupts.

OC SUB-OP OP1 OP2 OP3

\145 014 AR/I

OP1 = Not used
OP2 = Not used·

OP3 = 14-byte storage item for interrupt status

OPERATION: When this instruction is executed, a 14-byte item containing class 3
type interrupt status and associated error data is stored in the OP3
item as shown below:

MSBY LSBY

OP3 I Byte 1 Byte 2 I Byte 141
OP3 Item Contents

1 (MSBY) Sub-Op Code of instruction
2 Interrupt Status byte
3 OP1 Lower Address Limits (bits 8-15)

4 OP1 Lower Address Limits (bits 0-7)
5 OPI Upper Address Limits (bits 8-15)

6 OPI Upper Address Limits (bits 0-7)

7 OP2 Lower Address Limits (bits 8-15)

8 OP2 Lower Address Limits (bits 0-7)

9 OP2 Upper Address Limits (bits 8-15)

10 OP2 Upper Address Limits (bits 0-7)

11 OP3 Lower Address Limits (bits.8-15)

12 OP3 Lower Adcir""ess Limits (bits 0-7)

13 OP3 Upper Address Limits (bits 8-15)

14 (LSBY) OP3 Upper Address Limits (bits 0-7)

1-128

Byte 2 (Interrupt Status Byte) specifies the type of class 3 interrupt

that has occurred. The class 3 type interrupts are described as

follows:

BYTE 2
Bit Position

o
1

2

3

4

5

6

7

Contents

non-operational Sub-Op Code

Not assigned
Delta Clock Interrupt
Not assigned
Not assigned
Machine Check Interrupt

Di rect t1emory Access Channel (Dt·1A) 6 Interrupt
Direct r~emory Access Channel (DMA) 7 Interrupt

Non-operational Sub-Op Code (2°) - This bit is set under the following
two conditions:

1. The Sub-Op Code in the instruction causing the interrupt was not.
in the processor's repertoire of instructions (an illegal instruc

tion) and therefore cannot be executed, or

2. The required hardware modules are not in the processor to execute
the Sub-Op Code (unavailable instruction).

In either event, the Sub-Op code is contained in byte 1 and bytes 3
through 14 contain the absolute beginning and ending addresses for the
OP1, OP2 and OP3 items of the instruction that caused the interrupt.

The programmer, by software methods, can determine which of the above
two conditions caused the interrupt (contents of byte 1) and in turn
take appropriate action. If the instruction cannot be executed due to

lack of hardware modules, the 9rogrammer may elect to include software

to perform the same operations as the External Instruction that could
not be executed. The recovery from this condition is simplified in

that the Sub-Op Code and the absolute address limits of the OP1, OP2
and OP3 items are defined for the instruction that could not be executed.

1-129

CAUTION

A unique condition exists when an Execute External
instruction containing four operands cannot be exe
cuted. This condition causes the Program Pointer
(P) to be off by one byte which must be corrected
by adding one (+1) to the value of P. See Appendix
A, Interrupt Programming for a detailed description
of this condition (Class 3 - Special Interrupts).

Delta Clock (22) - This bit is set when the Delta Clock counts down
to zero (see the Load Delta Clock instruction).

Machine Check (25) - This bit is set when a memory, I/O Selector
channel or BOMA channel parity error occurs.

BOMA Channel 6 (26) - This bit is set by the device attached to SOMA
channel 6 when it requires service from the processor.

BOMA Channel 7 (27) - This bit is set by the device attached to SOMA
channel 7 when it requires service from the processor.

NOTE

Byte 1 of OP3 contains the sub-op code of this
instruction (014), unless the interrupt type

. 0
was a Non-Operational Sub-Op Code (bit 2 set
in byte 2).

1-130

PURPOSE:

FORMAT:

EXTERNAL EXECUTE

Store Channel Parity Error

Mnemonic Op Code = SeE

Octal Up Code = *145

Octal SJb-Gp Code = 015

To obtain and store I/') 2nd OMA channel parity error status.

OC SUB-OC OPI OP2 OP3

1
145 015 .AR/ I I

OPI = Not used

OP2 -' Not used

OP3 = I-byte storage item for channel parity error status

OPERATION: When this instruction is executed, a I-byte item containing I/O and

OMA channel parity error status is stored in the OP3 item. The con

tents of the I-byte item is bit encoded as follows:

Bit
Position

a
1

2

3

4

5

6

7

}
}

~1eani ng

Specifies the I/O channel on which

the parity error occurred

Not assigned

1102 = BOMA channel 6 parity error

1112 = BOMA channel 7 parity error

a = BOMA data or status parity erro

1 = BO~1A address pari ty error

1-131

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Multiply Binary

Mnemonic Op Code = MB
Octal Op Code = *145

Octal Sub-Op Code = 020

To multiply a binary number by another.

OC SUB-OC OP1 OP2

1145 I 020 AR/I AR/I

OP3

AR/I

OP1 = MULTIPLICAND - 1- to 5-byte binary item
OP2 = HULTIPLIER - 1- to 5-byte binary item
OP3 = PRODUCT - 1- to 10-byte binary item

OPERATION: The contents of the OP1 item (multiplicand) are multiplied by the
contents of the OP2 item (multiplier) and the product is stored into
the OP3 item. The sign of the product is computed algebraically and
extended to the MSB of the OP3 item. If the OP3 item is too small to
contain the product of OP! and OP2, the result is indeterminate.

1-132

EXTERNAL EXECUTE

Multiply Literal Binary
Mnemonic Op Code = MLB

Octal Cp Code = *145

Octal Sub-Op Code = 021

PURPOSE: To multiply a binary ,lumber in core storage by a binary number con

tained in the instruction itself.

OC SUB-OC OP1 OP2 OP3 OP4

1
145 I 021 AR/I AR/I L

OPl = MULTIPLICAND - 1- to 5-byte binary item
OP2 = Not used

OP3 = PRODUCT - I- to 6-byte binary item

OP4 = MULTIPLIER - I-byte binary literal

OPERATIOtJ: The contents of the OP1 item (multiplicand) are multiplied by the
contents of the OP4 item (multiplier) and the product is stored into·
the OP3 item. The sign of the product is computed algebraically and

extended to the MSB of the OP3 item. If the OP3 item is too small to
contain the product of OP1 and OP4, the result is indeterminate.

1-133

PURPOSE:

FORMAT:

EXECUTE EXECUTE
Divide Binary

t·1nemoni c Op Code = DB
Octal Op Code = *145

Octal Sub-Op Code = 022

To divide a binary number by another.

OC SUB-OC OP1 OP2

1145 1 022 AR/I AR/I

OP3

AR/I

OP1 = DIVIDEND - 1- to 10-byte (not counting leading zeros) binary item
OP2 = DIVISOR ~ 1- to 5-byte binary item
OP3 = QUOTIENT - 1- to 5-byte binary item

REMAINDER - see Store Binary Remainder (SBR) instruction.

OPERATION: The contents of the OP1 item (dividend) are divided by the contents of
the OP2 item (divisor) and the quotient is stored into the OP3 item.
The sign of the quotient is computed algebraically and extend~d to the
MSB of the OP3 item. If the OP3 item is too small to contain the
quotient of OP1 divided by OP2, the result is indeterminate~

The "remainder" of a divide binary operation may be obtained by usinC)
the Store Binary Remainder (SBR) instruction.

1-134

PURPOSE: To
in

FORMAT:

Orl
OP2
OP3
OP4

EXTERNAL EXECUTE
Divide Literal Binary
Mnemonic Op Code = DLB

Octal Op Code = *145
Octal Sub-Op C~de = 023

divide a bi nary number in core storage by a binary number contained
the instruction i tse 1 f.

OC SUB-OP OPI OP2 OP3 OP4

1145 I 023 AR/I AR/I L I
- DIVIDENT I- to 6-byte (not counting leading zeros) binary item

= Not used

= QUOTIENT - I-to 5-byte binary item

= DIVISOR - 1- binary literal
REMAINDER - see Store Binary Remainder (SBR) instruction.

OPERATION: The contents of the OPI item (dividend) are divided by the contents of
the OP4 item (divisor) and the quotient is stored into the OP3 item.
The sign of the quotient is computed algebraically and extended to the
t1SB of the OP3 item. I f the OP3 item is too small to conta in the
quotient of OPI divided by OP4, the result is indeterminate.

The "remainder ll of a divide literal binary operation may be obtained by
using the Store Binary Remainder (SBR) instruction.

1-1.35

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Multiply Decimal

~1nemoni c Op Code = t1D

Octal Op Code = *145
Octal Sub-Op Code = 024

To multiply a decimal number by another.

OC SUB-OP OP1 OP2

145 I 024 AR/I AR/I

OP3

AR/I

OP1 = MULTIPLICAND - 1- to 12-byte unpacked decimal item
OP2 = MULTIPLIER - 1- to 12-byte unpacked decimal item
OP3 = PRODUCT - 1- to 24-byte unpacked decimal item

OPERATION: The contents of the OP1 item (multiplicand) are multiplied by the con
tents of the OP2 item (multiplier) and the product is stored into the
OP3 item. The sign of the product is computed algebraically and is
set into the sign zone of the LSBY of OP3. If the OP3 item is too
small.to contain the product of OP1 and OP2, the result is indeterminate.

1-136

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Multiply Literal Decimal

Mnemonic Op Code = MLD
Octal Op Code = *145

Octal Sub-Op Code = 025

To multiply a decimal number in core storage by a decimal number con
tained in the instruction itself.

OC SUB-OP OP1 OP2 OP3 OP4

1145 I 025 ARt I AR/I

OP1 = MULTIPLICAND - 1- to 12-byte unpacked decimal item
OP2 = Not used
OP3= PRODUCT - 1- to 13-byte unoacked decimal item
OP4 = MULTIPLIER - I-byte unpacked decimal literal

OPERATION: The contents of the OPl ite~ (multiplicand) are multiplied by the con
tents of the OP4 item (multiplier) and the product is stored into the
OP3 item. The sign of the product is computed algebraically and is set
into the sign zone of the LSBY of OP3. If the OP3 item is too small to
contain the product of OPI and OP4, the result is indeterminate.

1-137

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Divide Decimal

Mnemonic Op Code = DO
Octal Op Code = *145

Octal Sub-Op Code = 026

'To divide a decimal number by another.

OC SUB-OC OP1 OP2

1145 I 026 AR/I AR/I

OP3

AR/I

OP1 = DIVIDEND - 1- to 24-byte (not counting leading zeros) unpacked
decimal item

OP2 = DIVISOR - 1- to 12-byte unpacked decimal item
OP3 = QUOTIENT - 1- to 12-byte unpacked decimal item

REMAINDER - see Store Decimal Remainder (SDR) instruction.

OPERATION: The contents of the OP1 ite~ (dividend) are divided by the contents of
the OP2 item (divisor) and the quotient is stored into the OP3 item.
The sign of the quotient is computed algebraically and is set into the
sign zone of the LSBY of OP3. If the OP3 item is too small to contain
the quotient of OP1 divided by OP2, the result is indeterminate.

The IIremainderll of a divide decimal operation may be obtained by using
the Store Decimal Remainder (SDR) instruction.

1-138

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Divide Literal Decimal
Mnemonic Op Code = OLD

Octal Op Code = *145
Octal Sub-Op Code = 027

To divide a decimal number in core storage by a decimal number con
tained in the instruction itself.

OC SUB-OC OP1 OP2 OP3 OP4

1145 I 027 AR/I AR/I

OP1 = DIVIDEND - 1- to 13-byte (not counting leading zeros) unpacked
decimal item

OP2 = Not used
OP3 = QUOTIENT - 1- to 12-byte unpacked decimal item
OP4 = DIVISOR - I-byte unpacked decimal item

REMAINDER - see Store Decimal Remainder (SDR) instruction.

OPERATION: The.contents of the OPI item (dividend) are divided by the contents of
the OP4 item (divisor) and the quotient is stored in the OP3 item.
The sign of the quotient is computed algebraically and is set into the
sign zone of the LSBY of OP3. If the OP3 item is too small to contain
the quotient of OPI divided by OP4, the result is indeterminate.

The "remainderll of a divide literal decimal operation may be obtained
by using the Store Decimal Remainder (SDR) instruction.

1-139

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Binary to Decimal

Mnemonic Op Code = BTD
Octal Op Code = *145

Octal Sub-Op Code = 030

To convert a binary number to an unpacked decimal number.

OC SUB-OC OP1 OP2 OP3

1145 I 030 AR/I AR/I

OPI = I- to 10-byte binary item
OP2 = Not used
OP3 = 1- to 24-byte unpacked decimal item

OPERATION: The contents of the OP1 item are converted to an unpacked decimal

number and stored in the OP3 item. The sign of the OPl item is set
in the sign zone of the LSBY of OP3. If the OP3 iten is too small
to contain the converted number, the result is indeterminate.

1-140

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Decimal to Binary

t1nemoni c Op Code = DTB
Octal Op Code = *145

Octal Sub-Op Code = 031

To convert an unpacked decimal number to a binary number.

OC SUB-OC OPI OP2

b45 I 031 AR/I

OP1 = 1- to 24-byte unpacked decimal item
OP2 = Not used
OP3 = 1- to 10-byte binary item

OP3

AR/I I

OPERATION: The contents of the OPI item are converted to a binary number and
stored in the OP3 item. The sign of the OPI ite~ is extended to the
MSB of the OP3 item. If the OP3 item is too small to contain the
converted number, the result is indeterminate.

1-141

PURPOSE:

FORMAT:

EXTERNAL EXECUTE
Store Decimal Remainder
Mnemonic Op Code = SDR

Octal Op Code = *145
Octal Sub-Op Code = 034

To obtain and store the remainder resulting from a decimal divide
operation.

OC SUB-OC

1145 034

OP1 = Not used
OP2 = Not used

OP1 OP2

OP3 = 1- to 12-byte unpacked decimal item

OP3

AR/I

OPERATION: When this instruction is executed, the remainder, resulting from a
decimal divide operation, is stored in the OP3 item. This instruction
should immediately follow the execution of the Divide Decimal instruc
tion to insure validity of the reMainder. The sign of the remainder
;s the same as the dividend (see The Divide Decimal instruction) and
;s set in the LSBY of the remainder. If the OP3 item is too small to
contain the remainder, the result is indeterminate.

1-142

PURPOSE:

FORMAT:

EXTERtlAl EXECUTE
Store Binary Remainder
Mnemonic Op Code = SBR

Octal Op Code = *145
Octal Sub-Op Code = 035

To obtain and store the remainder resulting from a binary divide
operation.

OC SUB-OC OP1 OP2 OP3

(145 035 AR/I

OP1 = Not used
OP2 = Not used
OP3 = 1- to 5-byte bi nary item

OPERATION: When this instruction is executed, the remainder, resulting from a
binary divide operation, is stored in the OP3 item. This instruction
should immediately follow the execution of the Binary Divide instruc
tion to insure validity of the remainder. The sign of the remainder
is the same as the dividend (see the Binary Divide instruction) and
is extended to the MSB of the remainder. If the OP3 item is too small
to contain the remainder, the result ;s indeterminate.

1-143

INSTRUCTION EXPANSION MODULES

GENERAL

The programmable functions of the SYSTE~1 2400 Processor are expanded by in
corporating additional hardware modules. These modules are integrated within the
main chassis of the Processor and interface with the logic via the Direct Memory
Access (DMA) channels.

Two hardware modules are available with the Processor and are referred to as
Instruction Expansion Module A and B (see Figure 1-1).

I\.

SYSTEM ,) Instruction
2400 Expansion

Processor
A

Module A
(t-1a in Logi c) K Logic

~

,
Instruction V Expansion
Module B

/' Loqic
~
~

Figure 1-1. SYSTEM 2400 Processor Instruction Expansion Modules

Instruction Expansion Module A (SNAP P Adapter) provides the programmer with
a set of instructions to abort the main program, jump to a subroutine, and return
to the main program at the point of exit.

Instruction Expansion ~1odule B (Utility Adapter) provides the programmer with
a set of instructions to perform the following logical operations:

• Exclusive ORjLRC (Longitudinal Redundancy Check)

• Logical AND, and
• Inclusive OR.

• 16 Bit CRC
• 12 Bit CRC
• Load Utility Adapter

1-144

CHANNE L ASS I GtH1ErHS

Instruction Expansion r10dules A and B are connected to Direct ~1emory Access
(DMA) channels 2 and 1, respectively, as shown in Figure 1-2.

SYSTEM m-1A Instruction 2400 ~. _-J_~--,\
Expansion Processor "J V ~1odul e A U·1ai n Logi c) Channel 2

Dt1A Instruction
/ ~ Expansion
"r Channel 1 ~1odu 1 e B

Figure 1-2. Instruction Expansion Modules - Channel Configuration

INFORMATION TRANSFER

The transfer of data and commands between the Processor and connected
Instruction Expansion Modules is accompl'ished using the Special In and Special Out

instructions. These instructions are used to transfer information over the D~1A

Channels (see Figure 1-3).

I Special Out

:> SYSTEM -.
2400 COM~·1AND/DATA Instruction

Processor Expansion
Module

<:
Special In

RESULTS

Figure 1-3. Information Transfer

The Special Out instruction transfers the command (funct1ons to be performed)
and the data to be operated upon by the connected Instruction Expansion Module.

1-145

The format of the Special Out instruction is shown below:

OC OP1 OP2

105 AR/I AR/I

OC = Operational code for the Special Out instruction.

OP1 = Operand 1, a I-byte item containing the DMA channel number over
which the data specified by the OP2 item is transferred.

OP2 = Operand 2, a 1- or mUlti-byte item containing:

o The command code byte (fnstruction) specifying the function
to be performed. The command code must be the first· byte
transferred in the OP2 item.

o Data bytes conveying the information to be operated upon by
the Instruction Expansion Module as specified by the command
code byte.

The Special In instruction is used to retrieve and store the results (contents)
from the Instruction Expansion Module following an operation directed by the com
mand code in a Special Out instruction. The format of the Special In instruction
is shown below:

OC OPl OP2

AR/I AR/ I 1

OC = Operational code for the Special In instruction.

OP1 = Operand 1, a I-byte item containing the DMA channel number over
which the data is to be received.

OP2 = Operand 2, a multi-byte item into which the contents of the
Instruction Expansion Module is to be stored.

Although the format of the Special Out and Special In instructions remains
the same for the various functions performed by the Instruction Expansion t·1odules,
special commands are used to identify each function.

1-146

Ii'iSTR~jCTII]~l EXPANSIOn ~10DULE j~

GENERAL

Instruction Expansion ~1odule A (S~JAP P Adapter') 1 enables the ~rogrammer to
leave the main program, mump to a subroutine, and return to the main program at the
poi nt o,f ex it. Thi s programmed return/ j urnp capa bi 1 i ty requi re s that the address
of the next instruction (contents of the P-Register) to be executed in main memory
be saved before an exit is made to a subroutine.

The contents of the P-Register (saved address) is saved by the Instruction
Expansion Module upon execution of the Save P instruction. Execution of the Store
P instruction will obtain the saved address and store it in main memory.

The SYSTEM 2400 Assembler provides the macros 'RTN' and 'MDL' to accomplish
subroutine linkage without using a DMA channel.

Programmed steps required to implement the return/jump feature via expansion
module A are as follows:

Main Program

• Executes a Save P instruction which instructs the Instruction Expansion
Module to save the contents of the P-Register.

• Execute a GOTO instruction to jump to the subroutine.

Subroutine

• Execute a Store P instruction to obtain and store the saved address in
main memory as the address in a GOTO instruction.

• Execute the subroutine processing instructions.

• Execute a GOTO instruction to exit from the subroutine to a fixed location
in memory.

Main Memory

• Execute an instruction to subtract P-bias from the stored return address.

• Execute an instruction to increase the stored return address by plus 3.

1 Appendix G gives an in-depth coverage for users implementing this expansion.

1-147

• Execute the GOTO instruction containing the adjusted return address.
Return will be to the instruction following the GOTO instruction used to
exit from the main program.

The module A instructions include the following:

• Save (P) (1-149)
• Store (P) (1-150)

1-148

PURPOSE:

FORMAT:

DMA CHANNEL

PROGRAM CALL
Save (P)

Mnemonic Code = SAP or SVP
Octal OP Code = 105

To obtain and save the contents of the program control register (P).

OC OPI OP2

AR/I AR/I I

CODE: 002

COMMAND
CODE: 002

OPERATION: The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OPI.

EXAMPLE:

OP2 ;s a I-byte item containing the command code: 002.

The Instruction Expansion Module, upon receipt of the command code,
obtains and saves the contents of the P-register. The P-register
contains the address of the next instruction to be executed in the
program.

OC OPI OP2

1105 103 104 1

OPl Item 3 of Active Record 1 contains the DMA channel number.

OP2 Item 4 of Active Record 1 contains the command code.

1-149

PURPOSE:

FORMAT:

DMA CHANNEL

PROGRA~1 CALL
Store (P)

Mnemonic Code = SRP
Octal OP Code = 100

To obtain the contents of the P-register from the Instruction Ex
pansion Module and store it in main memory.

OC OP1 OP2

AR/I AR/I

CODE: 002

OPERATION: The input data received from the Instruction Expansion Module is
received via the DMA channel specified in OP1.

EXAMPLE:

OP2 item is to receive the input data.

The input data consists of a 2-byte address. This address is obtained
and saved by the Instruction Expansion Module as a result of executing
the Save P instruction.

OC OP1 OP2

241 101

OP1 Item 41 of Active Record 2 contains the DMA channel number.

OP2 Item 1 of Active Record 1 is to receive the input data.

1--150

INSTRUCTIon EXPANSION t10DULE B

GENERAL

Instruction Expansion t10dule B (Utility Adapter)l provides the programmer with
a logical set of instructions: exclusive OR~ inclusive OR, and AND functions. The
logical functions may be performed on two data characters or on a string of data
characters (as is the case when computing an LRC character for a string of data
characters). The I-byte result of a logical operation resides in the module
accumulator.

Instruction Expansion Module B is able to transfer the data in its I-byte
~ccumulator to the SYSTEM 2400 Processor via the Store Module Accumulator instruction.

The command codes used in the instructions to direct the Instruction Expansion
Module to perform a specific function contain two modifier bits, as shown below:

Byte

Command Code 7 6 5 14131211101

Command
Code Bits

1 = Save-Module-Accumulator Bit

o = Enable Instruction
Expansion t10dule

, .. ~.

Save Module Accumulator Bit (26) - Informs the Instruction Expansion Module to save
the contents of the accumulator. This feature pernits logical operations on strings
of data characters in excess of 255 bytes (the maximum number of data bytes trans
ferred with a single instruction is 256 with the first byte being the command code)
or on a group of single bytes or strings of bytes located in different part of
memory. For example, an LRC operation on a string of data characters greater than
255 bytes would require that bit 26 be set to a "1" in all subsequent instructions
conveying data during this operation. In addition, the contents of the module ac
cumulator may be stored in main memory using the Store t10dule Accumulator instruction
and may be returned to the accumulator in the Instruction Expansion Module using the

Appendix H gives an in-depth coverage for users implementing this expansion.

1-151

Enter Module Accumulator instruction, thus allowing more than one subroutine in the

main program to utilize the features of the Instruction Expansion t1odule.

Enable Instruction Expansion ~1odule Bit (27) - Bit 27 set to a "0" in a command
code enables the Instruction Expansion Hodule and informs the other connected
peripherals to deselect it.

The module B instructions include the following:

• OR (Exclusive) 1-153)

• Logical AND (1-155)

• OR (Inclusive) (1-157)
• Longitudinal Redundancy Check (1-159)

• Enter t10dule Accumulator (1-161)

• Store Module Accumulator (1-162)

1-152

PURPOSE:

FOR~1AT:

DMA CHANNEl.
CODE:

COMMAND
CODE:

LOGICAL SET
OR (Exclusive)

Mnemonic Code = ORE
Octal Op Code = 105

To logically OR (Exclusive) two· or more data

OC OPl OP2

@iJ ".R/ I AR/I I
001

001

With save-module-accumulator-modifier bit:

characters.

101

OPERATION: The output data from the OP2 item is sent to the Instruction Exoansion
Module connected to the DMA channel specified in OP1.

OP2 is a multi-byte item containing the command code as the leftmost
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com
mand code) of the OP2 item, resets its logic and prepares for an ex
clusive OR operation. The first data character (byte 2 of OP2) is
stored in the accumulator. The next data character received is ORled
with the contents of the accumulator, with the result residing in the
accumulator. This procedure is repeated for all data characters in the
OP2 item. The result of the exclusive OR operation is obtained and
stored in main memory using the Store Module Accumulator instruction.

Exclusive OR Operation: 1 1 0 0

101 0

o 1 1 0

RESTRICTION: A maximum of 255 data characters may be ORled with a single instruc
tion. When operating on data strings greater than 255 data characters,
the save-module-accumulator-modifier bit of the command code must be
set to a "1" in subsequent instructions to prevent the Instruction Ex
pansion r~odule from resetting its (ll,u)l~:ulu.~or, thereby destroying its
contents.

1-153

EXAMPLE: Two-byte OR (Exclusive) operation.

OP1

OP2

~

OC OP1 OP2

105 241 302
1

I tern 41 of active record 2

b1 b2 b3

1001 145 1141 Item 2 of active

b1 = Command code (exclusive OR)

b2 = 01100101

b3 = 01001100

Result = 00101001

1-154

record 3

PURPOSE:

FORMAT:

m1A CHAtlNEL
CODE:

COMMAND
CODE:

To logically AND

OC

,105

001

002

LOGICAL SET
Logical AND

Mnemonic Code = AND
Octal Op Code = 105

two or more data characters.

OPI OP2

AR/I AR/I

~4i th save-module-accumulator-modifier bit: 102

OPERATION: The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

OP2 is a multi-byte item containing the command code as the leftmost
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com
mand code) of the OP2 item, resets its logic and prepares for a logical
AND operation. The first data character (byte 2 of OP2) is stored in
the accumulator. The next data character received is AND'ed with the
contents of the accumulator, with the result residing in the accumulator.
This procedure is repeated for all data characters in the OP2 item. The
result of the logical AND operation is obtained and stored in main
memory using the Store Module Accumulator instruction.

Logical AND operation: 1 1 a 0

101 0
1 0 a 0

RESTRICTION: A maximum of 255 data characters may be AND'ed with a single instruc
tion. When operating on data strings greater than 255 data characters,
the save-module-accumulator-modifier bit of the command code must be
set to a "111 in subsequent instructions to prevent the Instruction

1-155

EXAMPLE:

Expansion Module from resetting its accumulator, thereby destroying
its contents.

Two-byte logical AND operation.

OP1

OP2

OC OP1 OP2

1105 241 304}

~ Item 41 of active record 2

b1 b2 b3
002 145 114 Item 4 of active record

b1 = Command code (logical AND)
b2 = 01100101
b3 = 01001100

Result = 01000100

1-156

3

PURPOSE:

PURPOSE:

FORMAT:

D~ CHANNEL

LOGICAL SET

OR (Inclusive)
Mnemonic Code = ORI
Octal Op Code = 105

To logically OR (Inclusive) two or more data characters.

DC OPI OP2

AR/I ARIIJ

CODE: 001

COM~1AND
CODE: 004

With save-module-accumulator-modifier bit: 104

OPERATION: The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel sp~cified in OPI.

OP2 is a multi-byte item containing the command code as the leftmost
byte, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com
mand code) of the OP2 item, resets its logic and prepares for an

inclusive OR operation. The first data character (Byte 2 of OP2) is

stored in the module accumulator. The next data character received
is ORIed with the contents of the accumulator, with the result residing

in the accumulator. This procedure is repeated for all data characters

in the OP2 item. The result of the inclusive OR operation is obtained
and stored in main memory using the Save Module Accumulator instruction.

For a complete explanation, see PROCESSOR PROGRAMMING IN MACHINE CODE,
Form r~o. ~1- 2269.

Inclusive OR Operation: 1 100

101 0
1 1 1 a

RESTRICTION: A maximum of 255 data characters may be ORled with a single instruc
tion. When op~rating on data strings greater than 255 data characters,

1-157

EXAMPLE:

the save-module-accumulator-nodifier bit of the command code must be
set to a "1" in subsequent instructions to prevent the Instruction
Expansion Module from resettin9 its accumulator, thereby destroying
its contents.

Two-byte OR (inclusive) operati on.,

OP1

OP2

1001]

DC OP1 OP2

1105 241 303

Item 41 of active record 2

Item 3 of active record 3

b = Command code (inclusive OR) 1
b2 = 01100101
b3 = 01001100

Result = 01101101

1.-153

PURPOSE:

FORMAT:

DMA CHAN~~EL

LOGICAL SET
Longitudinal Redundancy Check

f1nemoni c Code = LRC
Octal Op Code = 105

To generate a longitudinal parity number on a string of data characters
(exclusive OR).

OC OP1 OP2

AR/I AR/I

CODE: 001

COMMAND
CODE: 001

With save-module-accumulator-modifier bit: 101

OPERATION: The output data from the OP2 item is sent to the Instruction Expansion
Module connected to the DMA channel specified in OP1.

OP2 is a multi-byte item containing the command code as the leftmost.
byte in the item, followed by data characters (255 bytes maximum).

The Instruction Expansion Module, upon receipt of the first byte (com
mand code) of the OP2 item, resets its logic and prepares for an LRC
(exclusive OR) operation. The first data character (byte 2 of OP2) is
stored in the module accumulator. The next data character received is
ORled with the contents of the accumulator, with the result residing
in the accumulator. This procedure is· repeated for all data characters
in the OP2 item. The result of the LRC operation is obtained and
stored in main memory using the Store Module Accumulator instruction.

RESTRICTION: A maximum of 255 data characters may be operated upon using a single
LRC instruction. When performing an LRC operation on data strings
larger than 255 data characters, the save-module-accumulator-modifier
bit of the command code must be set to a Ill" in subsequent instructions
to prevent the Instruction Expansion Module from resetting its accumu
lator, thereby destroying its contents.

1-159

EXAHPLE: Multi-byte LRC operation.

DC OP1 OP2

1105 241 lOll

OP1 10011 Item 41 of active r~cord 2

OP2 b1 b2 b3

001 145 114

b1 = Command code (LRC)

b2 = 01100101

b3 = 01001100

Result = 00101001

b4 = xxxxxxxx

New Result = xxxxxxxx

b = 5

etc.

10011001

bn = 01110101

Total Result = 11101100

In Accumulator

1-160

PURPOSE:

FORMAT:

DMA CHANNEL
CODE:

COMMAND

EtHER/STORE
Enter Module Accumulator

Mnemonic Code = EMA
Octal Op Code = i05

To enter the accumulator of Initruction Expansion Module B with a 1-
byte number.

OC OPI OP2

1
105 AR/I AR/I

001

CODE: 050

OPERATION: The output data from the OP2 item ;s sent to the Instruction Expansion
Module connected to the DMA channel specified in OPI.

OP2 is always a 3-byte item formatted as follows:

OP2

b1 = Command Code (E~1A)

b2 = The 1-byte value to be re-entered into the accumulator.
b3 = A dummy byte (any value) to position b2 within the

accumulator.

The primary function of this instruction is to re-enter the result of
a logical operation which was terminated prior to completion (usually
due to other requirements imposed on the Instruction Expansion ~1odule

by the program).

RESTRICTIOI~: After the current result of a logical operation has been re-entered
in the module accumulator, the operation may be continued. Since the
accumulator now contains a value to be operated upon, all subsequent
instructions conveying data to the Instruction Expansion Module must
have the save-module-accumulator-modifier bit (26) set in the command
code to avoid· clearing of the accumulator.

1-161

PURPOSE:

FORMAT:

DMA CHANNEL

ENTER/STORE
Store Module Accumulator

Mnemonic Code = SMA
Octal Op Code = 100

To obtain and store the contents of the Instruction Expansion Module
accumulator in main memory.

OC OP1 OP2

AR/I AR/I

CODE: 001

OPERATION: The input data from the Instruction Expansion Module is received via
the DMA channel specified in OP1.

OP2 item is to receive the input data.

The input data from the module accumulator of the Instruction Expansion
Module is a I-byte item for all logical set instructions.

1-162

SECTION II
SYSTEM 2400 ASSEMBLER LANGUAGE

I tHRODUCTI ON

The Assembler language is a symbolic programming language that includes:

• Basic Instructions that provide mnemonics that correspond to machine
language operation codes, and

• Assembler Directives that direct the assembler to perform certain tasks.

In machine-language instructions, octal numbers specify o~ codes and operands.
In the Assembler language, mnemonics specify the operation codes and symbolic names
to specify the records, items, buffers, addresses, and literals.

Below is an example written in Assembler language and in machine languaqe:

Assembler language MR ACCNT1,ACCNT2 REPLACE ACCNT MBR
Machine language 001110204

In this example, the mnemonic "MRII should bring to mind the Hove Right-Aligned,
No Fill instruction. Data is moved from "ACCNTi" to "ACCNT2". The comment following
the instruction states the purpose of this instruction in the program.

In the machine-language instruction, however, one must consult a table to tell
that "001" is the Move Right-Aligned, No Fill instruction. Further, one could not
readily discern that item 10 of active record 1 is being moved to item 4 of active
record 2. The intent or purpose of the instruction is not clear.

The Assembler language is used as follows:

• To easily define EBCDIC, USASCII, tri-octal, and address constants.

• To assign symbolic names to values which may be chanqed prior to assembly.

• To reserve unused areas within memory for reference during program execution.
(An earlier p"."'ogram may place data into such an area, for example.)

• To provide a self-documented program listing.

• To fac i 1 i tate pro<Jram and subrouti ne 1 in kages U1DL and RTrJ macro ins trut
tions), and

2-1

• To reassign a program to any part of memory (relocatability).

Once the program has been \'-Jritten in Assembler lanquage, t,he program must be
con~erted to equivalent machine coding before it can be executed. This conversion
(assembly) process is done by the Assembler program.

The Assembler performs three basic functions:

• Converts the Assembler instructions to their machine-language equivalents.

• Prints a listing of the Assembler instructions with their machine-language
equivalents and flags any syntax errors found.

• Hrites the machine-language coding on a magnetic tape for "collection" or
immediate program loading and execution.

CODING CONVENTIONS

Assembler instructions are coded in 80-character records for p~nched card
compatibility. Each instruction must be coded as follows:

• Columns 1-9 contain the label field.

• Columns 10-15 contain the op-code field.

• Columns 16-35 contain the operand field.

• Columns 36-71 contain the comment field.

• Column 72 is reserved for editing.

• Columns 73 to 80 are not checked, but may contain sequence numbers or
comments.

A ZabeZ, if present, must start in column 1. At least one space must separate
the label (or start-of-card) and op-code fields, the op-code and operand fields,

and the operand and comments fields.

NOTE

If an asterisk (*) is coded in column 1, the
record is considered a comGent and is therefore
not translated into machine code. A comment
is simply printed on the Assembler listing.

2-2

snmOL I C NAt·1ES

The Assembler uses syr.lbolic numes for:

o Mnemonic op codes;
• Locations (addresses) of instructions;

• Locations of data;

• Records;
• Items within records; and

• Buffers

Symbolic names must follow these rules:

1. A name must contain from 2 to 6 characters.

2. The characters of a name must be the letters of the alphabet (A-Z) or
the digits (0-9), in any combination.

3. The first character of a name must be alphabetic.

4. The names SPACE, NULL, HICORE, NXCORE, SDAPE, PBIASE are reserved for
soecial use. (SPACE is octal 100; tlULL is octal 000; for others, see
IIRelocatability", page

Examples:

Valid
Valid

A123BC
PAYIN
50UT
C

IrJP$S

Invalid; first character must be alphabetic
Invalid; must contain from 2 to 6 characters
Invalid; characters must be alphabetic or digits

Programmers should not utilize the lo",er area of core memory in Assembler
language programs. Core locations below 100 are currently assigned or reserved
for future use as follows:

Address (octal)

000,001
002,003
004,005
OOG,007
010,011

LIST OF ~ESERVED MEHORY LOCATIOUS

Content

SDAT pointer
I/O function table address
Address of data record, ACTIVE RECORD 1
Address of item descri~tor table, ACTIVE RECORD 1
Address of data record, ACTIVE RECORD 2

2-3

012,013

014-015

016-017

020-021

022-023

024-037

040-057

060-077

BASIC INSTRUCTIONS

Address of item descriptor table, ACTIVE RECORD 2
Address of data record, ACTIVE RECORD 3
Address of item descriptor table, ACTIVE RECORD 3
P-BIAS (program start/restart address)
Real-time clock
Interrupt
Interrupt state SDAT pointer and active registers

Reserved for future use

For each Peripheral Processor machine instruction there is a corresponding
Assembler instruction. Each instruction has from zero to four operands within it,
and each instruction may optionally have a label attached to it. The label must
start in column 1.

In Table 2-1 below, the basic instructions are grouped according to number
and type of operands. Operands are separated by commas with no intervening spaces.
If a 2-byte operand is coded where a I-byte operand should be, the Assembler flags
the statement with an "1" (invalid) and uses the rightmost byte only. If the
wrong number of operands is coded, the Assembler fl ag s the s ta temen t wi th a "H'I

(warn~ng) and uses nulls (000) in place of missing operands.

Table 2-1. Basic Instructions

INSTRUCTION TYPE MNE~10NIC INSTRUCTION NAME

Type I Instructions With No H 143 Halt
Operand (One Byte GAP 147 No Operation - leave Gar> Total)

S~JS 154 Swap States
SIl 155 Set Interrupt Lockout

CIl 157 Clear Interruot Lockout

Type II Instructions With One TBS 040 Test Binary Sign
I-Byte Operand (Two TOS 042 Test Decimal Sign Bytes Total)

STD 124 Store Designators

LD 126 Load Designators

STT 134 Store Tally Counter

LT 136 Load Tally Counter

SOl 146 Set Display Indicators

2-4

Table 2-1. Basic Instructions (Continued)

IUSTRUCTION TYPE r·1N Et10 U I C INSTRUCTION UAME

cor 156 Clear Display Indicators
LSP 161 Load Storage Descriptor Pointer
LRI 165 Load Active Record 1
LR2 171 Load Active Record 2
GRT 173 GOTO Return (Branch)
1M 174 Interrupt Mask
LR3 175 Load Active Record 3
GIR 177 Interrupt Branch GOTO

Type III Instructions With One NOP 020 No Operation
2-Byte Operand (Three GGT
Bytes Total) 021 GOTO Greater Than

GLT 022 GOTO Less Than
GNE 023 GOTO Not Equal
GE 024 GOTO Equal
GNL 025 GOTO Not Less Than
GNG 026 GOTO Not Greater Than
G 027 GOTO Unconditionally

Type IV Instructions With One GO 030 GOTO On Designators
I-Byte Operand and r,S 031 GOTO On Switches One 2-Byte Operand
(Four Bytes Total) GBG 061 GOTO Binary Greater Than

GBL 062 GOTO Binary Less Than
GBN 063 GOTO Binary Non-Zero
GBZ 064 GOTO Binary Zero
GGBE 065 GOTO Binary _ Zero
GLBE 066 GOTO Binary _ Zero
GDG 071 GOTO Decimal Greater Than
GDL 072 GOTO Decimal Less Than
GDN 073 GOTO Decimal Non-Zero
GDZ 074 GOTO Decimal Zero
GGDE 075 GOTO Decimal Zero
GLDE 076 GOTO Decimal Zero
GA 107 GOTO On Active Channel
fiSI 113 GOTO On Service Request
GCI 117 GO TO On Channel Interruot
GCT 170 GOTO On Count

GSB 176 GOTO Subroutine (Branch)

2-5

Table 2-1. Basic Instructions (Continued)

I tJSTRUCT I OtJ TY PE r1NEt1orn C

Type V Instructions With Two MOOD
I-Byte Operands
(Three Bytes Total) RN 000

Type VI Instructions With
Three I-Byte
Operands (Four
Bytes Total)

MR 001

CB 044
CD 046
MPK 050

MUP 052

INS 100·

OTS 105

STC 110

STR 111

ItJR 112

IN 114

OUT 115

OTR 116

APA 121
EXP 131

EX 132

EXA 133

ML 141

CAN 142

CL 144

TI 150

TL 151

T~1 152

TIt1 153
TCK 162

MF 004
~'iRF r, r;;,

MJ G~)c

MRJ (1':17

/\8 ()!j 1

A 04:3

SB 045

2-6

I~lSTRUCTION r~Ar~E

~1ove Item, Left-Ali gn, ~lo Fi 11
Rename
Move Item, Right-Align, No Fill
Compare Binary
Compare Decima 1
~1ove, Pack
t·1ove, Unpack
Special In
Special Out
Store Channel Control Register
Store Channel Reverse
Initiate Input Reverse
Initiate Input On Channel
Initiate Output On Channel
Initiate Output Reverse
Append, Advance
Extract Previous Item
Extract Item
Extract Ite~, Advance
Move Literal
Compare Alphanumerics
Compare Literal
Test Item
Test Literal
Test Mask
Test Iter.l r1ask
! ;)ngituciinal Redundancy Check

:'1ove Item, Left""·A"\"ign, Fill
Move Item, Right-Align, Fill
Move Item, Left-Justify, Fill

Move Item, Right··Justify, Fill
Add B"; na ry

/\dc1 D '.:'::: i ma 1
Subtrbct Binarv

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE MNE~,10NI C INSTRUCTION NAME

S 047 Subtract Decimal
ALB 051 Add Literal Binary
AL 053 Add Literal Decimal
SLB 055 Subtract Literal Binary
SL 057 Subtract Literal Decimal
EF 104 External Function On Channel
EFS 106 External Function Special
APR '120 Append, Right-Eliminate
APE 122 Append, Left-Eliminate
TRL 140 Translate Code
X 160 OR (txclusive)
a 164 OR (Inclusive)
N 166 Log i ca 1 AND '
GTB 172 GOTO Table (Indirect Branch)

Type VI Instructions With CP 014 Compress Item, Left-Align, Fill
Four I-Byte CPR 015 Compress Item, Right-Align, Fill Operands (Five
Bytes Total) EXV 130 Extract Variable Length Item,

Fill

EXPANSION MODULE INSTRUCTIONS

Type VIII Instructions with SRP 100 Store (p)
Two I-Byte SMA 100 Store Module Accumulator Operands (Three
Bytes Total) SAP 105 Save (P)

SVP 105 Store (P)
ORE 105 OR (Exclusive)
AttD 105 Loqical AND
ORI 105 OR (Inclusive)
LRC 105 Longitudinal Redundancy Check
E~1A 105 Enter Module Accumulator

2-7

Table 2-1. Basic Instructions (Continued)

INSTRUCTION TYPE MNEMO~JI C INSTRUCTION NAME

EXTERNAL EXECUTE INSTRUCTIONS

Type IX Instructions With LC 145 004 Load Delta Clock
One Sub-Op-Code And
One I-Byte Operand
(Three Bytes Total)

Instructions With SEE 145 014 Store External Instruction Error
One Sub-Op-Code And SCE 145 015 Store Channel Parity Error Three I-Byte
Operands (Five MB 145 ·020 Multiply Binary
Bytes Total) DB 145 022 Divide Binary

~10 145 024 t~u 1 tip 1 y Dec ima 1
DO 145 026 Divide Decimal
BTD 145 030 Binary to Decimal
DTB 145 031 Decimal to Binary
SOR 145 034 Store Decimal Remainder
SBR 145 035 Store Binary Remainder

Instructions With MLB 145 021 Multiply Literal Binary
One Sub-Op-Code And DLB 145 023 Divide Literal Binary Four I-Byte
Operands (Six MLD 145 025 Multiply Literal Decimal
Bytes Total) OLD 145 027 Divide Literal Decimal

Operands in basic instructions may be in the following formats:

A. A tri-octal character string at least two digits long between 000 and 377

for I-byte operands, or between 000-000 and 377-377 for 2-byte operands.
As shown, a minus sign may be used to separate the digits of each byte.

B. A label format, with the value limitations as in A above.

C. A label + nnnnn format, where "nnnnn" is a decimal value between 0 and
99999, with the value limitations as in A above.

D. A label - nnnnn format, where "nnnnn" is a decimal value between 0 and
99999, with the value limitations as in A above.

E. An n/label format, where "n" is a decimal value indicating an active
record (see below), and Label is a tri-octal value between 0 and 77.

2-3

0 =

1 --

2 =

3 =

F. An n/ii

" i i " is

on 1 y.)

SDAT Pointer

Active Record 1.

Active Record 2.
Act"j ve Record 3.

format, where II nil indicate"s

a l- or 2-byte octal number

an active record (as in E above), and

between 0 and 77. (For I-byte operands

G. A single character (except space, +, *, or comma) may be· used as a Ziteral

(I-byte operand). The Assembler will translate the character to its cor

responding EBCDIC code.

NOTE

The first operand cannot be in this

format.

H. A defined character (EBCDIC, USASCII, Decimal or Octal) may be used as a

literal (I-byte operand) in a valid instr~ction operand field or as a

constant (I-byte operand) in dir'cctives which require operands. The

format of the operand is as follows:

U'u' where U indicates that the character between the apostrophes

is an USASCII character and is translated into its

USASCII code equivalent.

u = USASCII character.

C'c' where C indicates that the character between the apostrophes

is an EBCDIC character and is translated into its

EBCDIC code equivalent.

c = EBCDIC character.

D'ddd ' where D indicates that the number between the apostrophes

is a decimal number and is translated into its

binary equivalent.

ddd = decimal number (0-255)

0'000' vJhere a indicates that the number between the apostrophes

is an octal number and is translated into its binary

equivalent.

000 ::: octal number (0-·377)

2-<)

Example 1: TL

Example 2: RES

FLAG,C'A'

0'2,0.0'

I. Labels may be chained up to a maximum of 28 characters in the operand

field. The plus (+) and minus (-) signs are valid arithmetic operators
within the chain.

NOTE

If a constant is used, it must be located at the end
of the chain. Only one constant may be used in a
chain.

Example: G GET+GOT-PUT+O'IOO '

The operand in the example contains 18 characters.

A single asterisk (*) may be used in place of a label in formats 8, C, and
D. The asterisk is equal to the address of the op-code of the instruction. The
value so generated is a 2-byte operand.

An asterisk used in a GO instruction is equal to the op-code address minus
the PBIAS.

The permissible Assembler operands and operand formats are summarized in
Table 2-2.

LINKAGE MACROS

The Assembler has two linkage macros available which can simulate the "catch-PI!
function (executing an out-of-line subroutine) or pass parameter addresses between
subroutines. Each may optionally have a label.

Move Double Literal (MOL) Macro Statement

Mnemonic: MOL

The MOL statement has two operands:

1. A I-byte "active-recor~/item-numbe(lI (Formats A, B, C, 0, E, F, G, H in

Table 2-2).

2. A 2-byte address (Formats A, B, C, 0 in Table 2-2).

2-10

Table 2-2. Summary of Op~rands

OPERAr~D FORMATS

A. (i). Self-defining tri-octal: 0 to 37"7.

(ii). Self-defining tri-octal: 0 to 377. (Dashes allowed)
B. Label (e.g. "ABC123", or "*").

C. Label+nnnnn (where "nnnnn" is decimal, a to 99999).
D. Labe 1- nnnnn (where II nnnnn" is decir.la 1, a to 99999).
E. n/LABEL (where "nll = 0,1,2, or 3, and "LABEL" = 0 to 77 tri-octal).
F. n/ii (where "n" = 0,1,2, or 3, and lIii" = 0 to 77 tri-octal).
G. x (where II X" is asingle character except "+11, "*11, space, or ",").

H. A defined character: EBCDIC, USASCII, Decimal, or Oct~l.
I. Labels may be joined in an algebraic exnression with D1us (+) and minus

(-) signs. Only one constant may -e used and it must be the last term
in the expression.

PERMISSIBLE OPERANDS

a. For Type II basic instructions (see Table 2-1).
Operand Types: A(i), B, C, 0, E, F (Values 0 to 317)

b. For Type III basic instructions (see Table 2-1).
Operand Types: A(ii), B, c, 0

c. For Type IV basic instructions (see Table 2-1).
First Opetand: A(i), B
Second Operand: A(ii), B, c, 0

d. For Type V and VI basic instructions (see Table 2-1).
First Operand: A(i), B, C, 0, E, F
Sub seq u en tOp era n d s : A (i i), B, C, D, E, F, G

e. For r,1DL and RTN Linkage ~1acros.
First Operand: A(i), B, C, D, E~ F
Second Operand: A(ii), B, C, 0

f. For constants in 'DC' when defining addresses (Y or A) and in 'SO'.
A(ii), B, C, 0

g. For BUFF and RES Assembler Directives. B, C, 0, H
h. For END and LOAD Assembler Directives. A(ii), B, C, 0
i. For ENTRY and EXTRN Assembler Directive. B
J. For E0U Assembler Directive. A(i), A(ii), B, C, 0, E, F, G
k. For constants in 'DeF I Assembler Directive. A(i). H, I.

2-11

The 2-·byte address is moved into the item defined by the first operand. The
item is assumed to be two bytes 1 onq. The t1DL s ta tement is effected by the "141"

and "051" (or 11055") machine instructions.

Both operands may be external labels.

Example:

To move the address of "DATA" to the 2-byte field "PARt1 11
, code the following

statement:

MOL PARM,DATA

Return (RTN) Macro Statement

Mnemoni c: RTtl

The RTN statement has the same format as the MOL statement.

The P-BIAS is subtracted from the 2-byte address and the result is moved
into the item defined by the first operand. The item is assumed to be two bytes
long.

Typically, the first operand of an RTN statement describes the 2-byte operand
of a "G" instruction. Linkage to a routine called IIMULT II may be accomplished by
the following statements:

RTN MUEXIT,RETURN
G MULT

RETURN ALB COUNT, COUNT, 001

The routine "MULT" exits by executing the "Gil instruction whose operand is
defined by "MUEXIT '1

• Control is returned to the original routine at the instruction
labeled "RETURN".

Both operands may be external labels.

DEFINITION OF CONSTANTS

Data used by the program may be defined by the DC (Define Constant) statement.
Seven types of operands may be associated with the DC statement. Only one operand
may anoear in each DC statement. Optionally, the DC statement may be labeled.

2-12

Definition of Tri-Octal Constant

First byte of operand must be the letter "0".

Optionnlly, a length may be specified as 'Lnn"', where Inn' is a decimal number
from 1 to 99. If no length is specified, the length is calculated from the constant
specified.

The constant itself is specified as (tri-octal) digits enclosed in single
quotes. FCi(. ":ddability, minus signs may be interspersed with the digits. The
constant specified is right-aligned in the constant area. Extra digits in the area
are made to ue nulls.

~Examp 1 c") : ,
DC OL3'010-224'

Generates a 3-byte constant with the tri-octal value '000-010-224'.

DC 0'112-253-364-111'

Generates a 4-byte constant with the tri-octal value '112-253-364-111'.

NOTE

If no constant is specified, the whole
constant area is filled with nulls.

Definition of EBCDIC Character Constant

First byte of operand must be the letter "C".

Optionally, a length may be specified, as above for tri-octal constant.

The constant itself is specified as (EBCOIC) characters enclosed in single
quotes. The constant specified is left-aligned in the constant area. Extra bytes
in the area are assumed to be spaces.

Examples:

DC CL5'PAGE'

Generates a 5-byte constant with the tri-octal value '327-301-307-305-100'
("P-A-G-E-space").

DC C'HOG'

Generates a J--byte constant "';1t,1 the tri -octal value '310--304-307 L ("H-D-G").

NOTE

If no constant is specified, the whole area is
filled with EBCDIC spaces.

Definition of USASCII Character Constant

First byte of operand must be the letter "U".

Optionally, a length may be specified as above for tri-octal constant.

The constant itself is sprcifir'r! as characters enclosed -in sin\jlr qu-otes. Each

c h a r act e r' i s t ran s 1 Cl t e ct to i t ~J :. ,~ ,: \ ::: j J e q (ri v ~l 1 (\ n t 2H) d ;, it·· ali 9 ned i l: t iKe 0 1. :.., tell ;-L

area. Extra bytes in the area are assumed to be USASCII spaces.

Examples:

DC UL5'PAGE'

Generates a 5-byte constant with the tri-octal value '020-001-007-005-040 1

(USASCII "P-A-G-E-space").

DC U'HDG'

Generates a 3-byte constant with the tri-octal value '010-004-007 1 (USASCII

"H-D-G") .

NOTE

If no constant is specified, the whole area
;s filled with USASCII spaces.

Definition of Binary Constant

First byte of operand must be the letter "0".

Optionally, a length may be specified as above for tri-octal constant.

The constant itself is specified as (decimal) characters enclosed in single
quotes. The constant' ("nnn") is a decimal number from 0 to 255. The constant
specified is right-aligned in the constant area. Extra bytes in the area are made
to be nulls.

Example:

DC OL 1'128 1

2-14

Generates a I-byte constant with the tri-octal value 1200 1 (12810).

DC DL6 1 91

Generates a 6-byte constant with the tri-octal value '000-000-000-000-000-0111

(910).

DC 0'255'

Generates a I-byte constant with the tri-octal value 1377 1 (25510).

Definition of Address Constant

First byte of operand must be the letter "A" or ny".

Optionally, a length may be specified, as follows:

"L2" indicates one address constant is to be generated.
".L4" indicates two address constants are to be generated.

One or two address constants follow, each ;n one of the A, B, C, or 0 formats
(see Table 2-2), enclosed by single quotes or brackets. If two constants are
specified, a comma separates them.

Examples:

DC A(AX04+3)

Generates one 2-byte address constant pointing to the label IAX04" plus three
bytes.

DC YL4(HERE,THERE)

Generates two 2-byte address constants, the first constant being an address
pointing to the label "HERE", the second being an address pointing to the label
"THERE" .

Definition of Biased Address Constant

The first byte of the operand must be the letter "B" or "J".

Optionally, a length may be specified, as follows:

"L2" indicates one biased address constant is to be generated.

"L4" indicates two biased address constants are to be generated.

I 2-15

One or two address constants follow, each in one of the A, B, C, or 0 formats
(see Table 2-2), enclosed by single quotes or brackets. If two constants are speci
fied, a comma separates them.

IIBiased" addresses are identical to ordinary addresses, except that the program
P-BIAS has been subtracted from them. A common use for this type of address is as
entries in a "jump-table".

Examples:

DC B(AX04+3)

Generates one 2-byte constant of an address pointing to the label "AX£,)4 " ,
plus three bytes, relative to the P-BIAS address.

DC BL4(HERE,THERE)

Generates two 2-byte constants, the first constant being an address pointing
to the label "HERE", the second being an address pointing to the label "THERE",
both relative to the P-BIAS address.

Definition of Constant Fill

Fill space in memory.

A label may be used optionally.

The .Define Constant Fill (DCF) directive allows the programmer to fill a
designated number of memory locations with a specific constant (character or
number). Four types of operands may be associated with the DCF statements:

Operand

DLnn'ddd '
CLnnIC '
OLnn'OOO'
ULnnlu l

where: nn =
ddd =
000 =

u =

specifies

Constant Type

Decimal
EBCDIC
Octal
USASCII

a constant length from 1-99.

specifies a decimal number, o to 255.
specifies a octal number', 0 to 377.

specifies a USASCII character.

2-16 I

Examples:

DCF DL80'100 - fills the next 80 locations with the octal value 144.
DCF CL2'A' - fills two locations with the octal value 301.
DCF OL3'123' - fills three locations with the octal value 123.
DCF UL10'B' - fills ten locations with the octal value 102.

ASSEMBLER DIRECTIVES

The Assembler directives prcvide additional information during-assembly of the
program. Note that if each directive requires an operand, the operand must be self
defining (i.e., numeric) or previously defined (if a label). When this rule is
broken, the statement is printed during phase 1 of assembly with a \lU" flag to
denote that the operand is undefined.

The Assembler directives include the following:

• BUFF

• DBL
• EJECT

• END
.- ENTRY

• EQU or =
• EXTRN

• LOAD

• OBJ
• NOBJ
• PUNCH
• REPRO

• RES
• SOP
• SGL
• SPACE
• START
• TITLE
• NOGEN

• GEN
• COM
• INC
, LIST

Define buffer for logical IOCS
- Double-space listing
- Start a new page in listing
- End assembly
- Specify entry point
- Equate or define label
- Specify -external label
- Set value of current address pointer
- Generate object code
- Generate no object code
- Punch operand into object code
- Reproduce next statement into object code
- Reserve space in memory
- Define SDAT pointer
- Single-space listing
- Leave a space in listing
- Start assembly
- Specify a title for the assembly
- Inhibit second and following print lines
- Cancel -previous NOGEtJ directive
- Specify entry point for AR/I information
- Include operand (library subroutine)
- Gener~te listing output

2-17

• NLIST - Generate no listing output
• PAGE - Set address pointer to start of next page

BUFF Directive

Define buffer for logical IOCS.

A label is not allowed with this directive.

One operand is required.

Example:

"BUFF 200"

Reserve 2~~ bytes for IOCS buffer.

NOTE

If the operand is self-defining, it must be a
decimal, number.

This statement should appear only once in an assembly. Its operand is con
verted to tri-octal and placed in the object output 'UCORE' record. (The Collector
reserves this space and provides the necessary linkage parameter to IOCS.) If this
directive is omitted, 300 bytes are provided for IOCS. This directive may appear
before the START directive. The BUFF statement ;s meaningless in non-relocatable
assemblies.

DBL Directive

Double-space listing.

A label or operand is not allowed with this directive.

This statement starts a new page on the assembly listing. Subsequent state
ments are double-spaced. This directive may appear before the START statement.

NOTE

When DBL has not been specified, statements are
single-spaced on the listinq. The DBL statement
itself does not appear on the listing.

2-18

EJECT Directive

New page on listing.

A label or operand is not allowed with this directive.

This statement starts a new pa0e on the assembly listing. This directive
maj appear before the START staten'2nt.

NOTE

The EJECT statement itself does not appear

on the listing.

END Directive

End assembly.

A label is not allowed with this directive.

One operand is required: the address of the first instruction to be ex~cuted

in the program. (This operand may be a tri-octal, self--defining term, or a label.)

This operand is placed into meillory locat'ions 20 and 21 and used as the program

P-BIAS. (The P-BIAS is also placed in the 'UCO~E' record by the Assembler.)

ENTRY Directive

Specify entry point.

A label is not dllowed with this uire~tive.

One oper0nd is required: ~t m~2t ~e a label) else~here defined.

Each ENTRY statement,must follcw the ST!\RT :;!:i)terncnt and must precede all basic

instructions, DC stat(~ments, and EXTR~I statement. ihi s statement wri tes d

'ZZZZENTkl; ; ('coY'd in the Gbject output, enabling the spec-if-jed ZabeZ to be y'e

ferenced in another assembly as a 2-byte address value. Also, this statement may

be used'JrzZy in re"locatable programs (see "Relocatability") page

EqU (or =) Directive

Equate or define label.

A label ~Z!st be used with this directive.

2-19

One operand is required: it may be in any of the formats A, B, C, D, E, F, or
G (see Table 2-2).

The label is assigned the value of the operand. The EQU directive may appear
before the START statement.

EXTRN Directive

Specify external label.

A label is not allowed with this directive.

One operand is required: it must be a Zabel.

The EXTRN statement may appear anywhere between the START and EtID statements,
but must appear after any ENTRY statements. This statement enables the programmer

to use the specified label elsewhere in the program as if it were an already-Defined

address (2-byte value) or AR/I information (I-byte valu~). The Collector later
determines the value of the label and inserts that value in the object codinq where
that label is used. This statement may be used only in relocatable programs (see
"Reloca,tability", page 2-31.

LOAD Directive

Set value of current address pointer.

A label is not allowed with this directive.

One operand is required: it may be in any of the formats A, B~ C, or 0

(see Table 2-2).

The LOAD statement resets the current address pointer to the value specified
by the operand. The next statement starts at that address. This directive is
ignored if it occurs before the START statement of the program.

OBJ Directive

Generate object code. (This directive is needed, only if "NOBJ" was soecified
earl i er.)

A label or operand is not allowed with this directive.

The OBJ statement writes object codin~ on tape (unless suppressed by Sense
switches, see "Operating the.Assembler" on page 2-34.

2-20

r~OBJ Directive

Generate no object cod:::.

A label or operand is not alloweG with this directive.

The NOBJ statement causes object coding to cease being written on tape.

PUNCH Directive

NOTE

When NOBJ has not been specified, object coding
is written on tape (unl~ss suppressed by Sense
switches, see "Operating the Assembler" on page 2-34

Punch operand into object code.

A label is not allowed with this directive.

One operand is required: any character string, enclosed in single quotes.

The operand is left-aligned, padded with spaces, and placed on the object
tape as an 80-byte record (unless suppressed by Sense switches, see 1I0pera ting the
Assembler" on page 2-34 . This directive may appear before the START statement.

Example:

PUNCH 'ttttPROGA'

REPRO Directive

Reproduce next statement into object code.

A label or operand is not allowed with this directive.

This statement places columns 1 through 74 of the next statement as an 80-byte

record on the object tape (unless suppressed by Sense switches, see "Operating the

Assembler" on page 2-34. The next statement is not processed by the Assembler as an
instruction. Bytes 75 to 80 of the object record are a check-sum and sequence
number, assigned by the Assembler.

RES Directive

Reserve space in memory.
2-21

A label may be used optionally.

One operand is required: the length of the field to be reserved at this address.

NOTE

If the operand is self-defining, it must be a
decimal number.

This statement increases the current address counter by the value of the operand.
No data will be loaded into the reserved area. Hhen the program is loaded at execu
tion time, the memory areas reserved by RES statements contain data and instructions
left from the previous program.

NOTE

The next instruction that produces object coding
starts a new object record. Therefore, RES state
ments should not be interspersed with DC stat~~

ments in the proqram data areas unless necessary.

The RES statement is ignored if it appears before the START statement.

SOP Directive

Define SDAT pointer.

A label is not allowed with this directive.

One operand is required: the address of the initial SDAT in the program~ in
any of the formats A, B, C, or 0 (see Table 2-2).

This operand is placed into memory locations ~ and 1 and used as the program
SOAP (SDAT Pointer) or Active Record~. This statement should appear only once in
an assembly. Its operand is converted to tri-octal and placed in the object output
'UCORE' record. This statement is ignored if it appears before the START statement.

The operand may be an external label.

SGL Directive

Single-space listing. (This directive is needed only if double-spacing was

specified earlier.)

2-22

A label or operand is not allowed with this directive.

This statement stores a new page on the assembly listing. Subsequent state
ments are single-spaced. This directive may appear before the START statement.

SPACE Directive

Leave a space on listing.

A label or operand is not allowed with this directive.

This statement causes a blank line to be left on the assembly listing. This
directive may appear before the START statement.

NOTE

The SPACE statement itself does not appear

on the listing.

START Directive

used:

Start assembiy.

A label is not allowed with this directive.

If this is to be a relocatable assembly, one of the following operands must be

REL - ZZZZUCORE record is generated.

REL,0 , This operand sets the LO ahd HI fields in the ZZZZUCORE record to zero,

regardless of program size.

Basic instructions (and certain directives) are ignored when they appear
before the START statement. This statement must appear once (and only once) in each
assembly and indicates to the Assembler that basic instructions are to be converted

to object code from this point on until the END card is reached.

TITLE Directive

Specify a title for the assembly.

A label is not allowed with this directive.

One ')perand ;s required: any character string enclosed in single quotes.

2-23

This operand (up to 50 characters) is used as a title for the program listing.
This statement causes a new page with the specified title to begin. This title

is printed at the top of each page of the listing until changed by another TITLE
statement. This statement may appear before the START statement.

Example:

TITLE

NOGEN Directive

'PROGRAM A - - WRITTEN BY J. DOE'

NOTE

The TITLE statement itself does not appear
in the assembly listing.

Inhibit second and following print lines.

A label or operand is not allowed with this directive.

This statement suppresses the additional print lines associated with a par

ticular statement. Only the first line is printed. It may also be used to suppress
the second and following print lines of an RTN or MOL pseudo-op or the additional
lines associated with a "DC" command.

GEN Directive

Cancel previous NOGEN directive.

A label or operand is not allowed with this directive.

This statement inhibits the effect of any previous NOGEN directive.

COM Directive

Specify entry point for AR/I information.

A label is not allowed with this directive.

One operand is required: it must be a label, elsewhere defined.

This statement is like an ENTRY statement, except COM is used to make active
record information or a record number within an SDAT available to other programs.
This causes the Collector to pass a I-byte, unbiased parameter. COM should appear

2-24

after the START directive and must precede all basic instructions, DC statements,

and EXTRN statements. This statement may be used only in relocatable progrms (see
"Entry " directive, page 2-19). (See also "Re-\ocatability", page 2-31.

INC D-irective

Includes operand (library subroutine).

A label is not allowed with tr~is di-rective.

One operand is required; it must be an ENTRY name.

This statement generates an EXTRN object record with a special flag. During
the collection phase, thi-s record directs the collector program to include the
specified subroutine (ENTRY name) on to the object program tape being collected.

LIST Directive

Generate listing output (This directive is needed only if "NLIST" was specified
earlier).

A label or operand is not allowed with this directive.

The LIST statement directs the assembler to.begin transfer of the listing
output to the device specified via the Sense switches (see "Operating the Assembler ll

on page 2-34.

NLIST Directive

Generate no listing output.

A label or operand is not allowed with this directive.

The NLIST statement directs the assembler to terminate transfer of the listing
output to the device specified via the Sense switches (see "0pera ting the Assembler"
on page 2-34.

NOTE

When NLIST has not been specified, the -listing output
;s generated unless suppressed via the Sense switches
(see "0perating the Assembler ll

, page 2-34.

2-2'1

PAGE Directive

Set current address pointer to starting address of the next page.

A label or operand is not allowed with this directive.

NOTE

Each page re~resents 3778 bytes of memory.
Page bou~daries are defined as follows:

Page Bytes
1 000-000 through 000-377
2 001-000 through 001-377
3 002-000 through 002-377

GENERATING A STORAGE DESCRIPTOR AREA TABLE (SDAT)

Each entry in an SOAT consists of two addresses. Any entry can be defined by
the SO instruction. A storage descriptor area table (or portion thereof) is started
by the SSDT directive. Except for comment cards or EqU statements, no statements
can be interspersed with SO statements.

SSDT Directive (Start Storage Descriptor Table)

A label is optional on this directive. (Normally, this label is the operand in
the SOP directive.)

A self-defining octal constant between ~ and 77 is the only operand. (normally,
this constant is ~.)

The value of the operand is the value assigned to the label of the first SO
statement following the SSDT directive. Thereafter, each SO statement has a value
one greater than the previous value assigned to its label.

SO Directive (Storage Descriptor)

A label is optional. The value assigned to the label is a record number between
o and 77 (octal) one greater than that of the previous SO statement. (If the pre
vious statement was an SSDT, the value of the label will be that of the operand of
the SSOT.)

2-26

Two operands appear in the SO statement: each in one of the formats A, B, C,
or 0 (see Table 2-2).

The SO instruction will generate two 2-byte addresses, as specified by the
operands.

GENERATING AN ITEM DESCRIPTOR TABLE (lOT)

Each entry in an SDAT consists of two I-byte "relative displacements" from a
record area describinb the start and end bytes of a field. An entry can be defined
by the 10 instruction. An item descriptor table (or portion thereof) is started by
the SIDT directive. Except for comment cards or EQU statements, no statements can
be interspersed with 10 $tatements. Figure 2-1 demonstrates the relationship of
,1~bels in the SOAT, lOT, and record area, and their use in the executable instruc
tion section.

SlOT Directive (Start Item Descriptor Table)

A label is optional on this directive. (Normally, this label is referenced as
the .second address in an SO instruction.)

The first operand is the address of the record being described by this table.
(Normally, this address is the first address in the associated SO instruction.)
This operand may be in one of the formats A, B, C, or 0 (see Table 2-2).

The second operand is the "active record/item" n'umber to be assigned to the
first item described in the table. Thereafter, each item in the table will have a
value, one greater than the previous, assigned to the label of the 10 defining it.

10 Directive (Item Descriptor)

The four types of 10 operands, are described under separate headings below.

GAP DEFINER

A label is not allowed with a "gap" definer.

Two operands, separated by commas, are used:

1. The first is a minus s;qn;

2. The second is a decimal number defining the length of the gap.

This type of 10 does not generate an item descriptor. It signifies that the
next item descriptor will have, as its "startll byte, a value reflectinq the existence

2-27

of the gap defined by this descriptor. The gap is considered to start at the byte
immediately after the "end" byte of the previous item (or at YJ if the SlOT statement

preceded) .

REDEFINE AND LEAVE GAP

A label is not allowed with this type of 10.

Two operands, separated by commas, are used:

1. The first operand is the letter n (redefine).

2. The second operand is a decimal number defining the length of the gap (it
may be IIYJ").

This type of 10 does not generate an item descriptor. It signifies that the
next item descriptor will have, as its "start" byte, a value reflecting the existence

of the gap defined by this .descriptor. The gap is considered to start at the "start"

byte rif the previous item (or at YJ if the SlOT statement preceded).

DEFINE START AND LENGTH OF ITEM

A label must be used with this type of 10. The value assigned to this label is
one more than the value assigned to the previous item. (If this is the first 10 in
the table to describe an item, the value assigned to the label is that of the second

operand of the SlOT defining the start of the table.)

Two operands, separated by commas, are used:

1. The first operand defines the start of the item. It may be a label (format

B, C, or 0, see Table 2-2) or a decimal number indicating the displacement
from the start of the recird (from 0 to 255). If a label is used, the

displacement is caluclated by subtracting from its value that of the first
operand of the SlOT statement starting the table.

2. The second operand is a self-defining decimal number from 1 to 256

specifying the length of the item being described.

This type of 10 generates a 2-byte item descriptor.

DEFINE LENGTH OF ITEM

A label must be used with t~is type of 10. The value assigned to this label is
one more than the value assigned to the previous ite~. (If this is the first 10 in
the table to describe an item, the value assigned to the label is that of the

second operand of the SlOT defining the start of the table.)

2-28

1) The SOP instruction po1nts to' the SSOT directive.

r -- - --1 r -- - - ---- ---.,
I sOP ~ SSOT 0 I
L _____ .J I BUFF 1 SO HERE,HERE+20 I

L CAROSO SO COREC, COI0T.J

2) The first operand of a record SO points to the actual data area; the
second points to the SlOT directive; the label is used in the "load
active record nil. instruction.·

.. -------,
I COREe RES 80 I

~--T---~--·-------l·
: SlOT COREC ,2/0 I
I 10 -,3 I
I COL4 10 1
I 10 R,0
I COL45 10 2

: COLENO i ~ . i ,74
I L ____________ J

3) The first operand of the SlOT directive points to the actual data area~
the second operand specifies the active record into which"the cor
responding SO will be loaded.

4) Labels defined in the lOT (by 10 instructions) are used as I-byte
operands in instructions. (In this example, 'COL45" will have a value of
"201" and describe columns 4 and 5 of the record in ICDREe".)

Figure 2-1. Use of SOAT and lOT

2-29

EDITING SOURCE INPUT
So that anticipated modifications to source programs may be coded but not assembled,
the Assembler provides an editing feature. Based on the value of a code in column
72, the Assembler will either treat a particular statement as a comment or as a
statement to be assembled. Two types of editing are supported, as described below.

Normal Editing (Switch H)
A. Edit Switch OFF:

All statements will be assembled, except those with "+" (plus sign) in
column 72.

B. Edit Switch ON:
All statements will be assembled, except those with "_" (minus sign) in
column 72.

The programmer should write his program such that anticipated deletions are coded
with a minus sign, while anticipated additions are coded with a plus sign. Turning
on the Edit switch during assembly gives him the "anticipated" program with all
changes.

Three-Program Editing (Switches G and H)

Using this method, "+" or "_" should not appear in column 72.
A. Switch G and H OFF: All statements will be assembled.
B. Switch G ON, H OFF: All statements will be assembled, except those with the

digits 1,3,5 or 7 in column 72.

C. Switch GO OFF, H ON: All statements will be assembled, except those with the
digits 2, 3, 6, or 7 in column 72.

D. Switch G ON, H ON: All statements will be assembled, except those with the
digits 4,5,6 or 7 in column 72.

Conceptually, this method allows the programmer to have three different "versions"
of a program with one source input. Column 72, in each' case, contains a number
representint the decimal sum of the "version numbers" in which the statement will not
appear. The versions are numbered: 1 (G OFF; H ON); 2 (G ON; H OFF); and 4 (G ON;
H ON).

The following tables indicate whether a particular statement will be assembled (A)
or not (N) under the various switch settings.

2-30

NORMAL EDITING
CONTENT OF
COLUMN 72

Other, except
+ - 1 through 7)

--.'

HOFF N A A

H ON A N A

--.--

THREE PROGRAM EDITING
CONTENT OF COLUMN 72

(Other, except
1 2 3 4 5 6 7 + or -)

GOFF; HOFF A A A A A A A A

F OFF; H ON A N N A A N N A (Version 1)

G ON; HOFF N A N A N A N A (Version 2)

F ON; H ON A A A N N N N A (Version 4)

RELOCATABILITY
Predefined External Labels
When writing a relocatable program (see START directive), certain special predefined
external labels may be used: .

HICORE - The address of the highest byte of core.
NXCORE - The address of the next unused byte of core after collection of all

modules.
PBIASE - The P-BIAS of the main (first) module in a collection.
SDAPE - The SDAT-POINTER of the main (first module in a collection.

EXTRN statements for these names must not be written. Reference to external labels
(both predefined and those defined by EXTRN statements) must be made to the label
only, not with "pl us " or "minus" notation.

2 - 31

EXTRN, ENTRY and COM Statements

EXTRN statements in an assembly refer to labels defined in other modules. Such
labels are referenced by ENTRY and COM statements in the modules in which they are
defined.
The collector will gather together all modules with matching EXTRN and ENTRY or COM
labels and substitute the proper addresses for each occurrence.

I~~~~UCORE' Card-Image
The assembler will produce a '~~~~UCORE' card-image in every relocatable assembly
to communicate to the Collector miscellaneous information about the Assembler's use
of core memory.

ERROR FLAGS IN LISTINGS
Each statement in the source program is checked for syntax while being assembled.
If an error is found, a letter indicating the type of error is printed on the right
side of the listing on the same line as the statement in error. The left side of
the listing (where machine coding is printed) will have asterisks printed in the
same line as any syntax error. Table 2-3 lists syntax error flags and thE:ir re-
spective meanings. .

Absolute Non-relocatable Address
Absolute non-relocatable addresses will be generated by the assembler for address
type operands by either using a constant or preceding the label or constant with an
equal (=) sign in the operand field.

MODES OF OPERATION
The SYSTEM 2400 Assembler provides for both single file and multi-file assembly pro
cessing. Sense switch E is used to select the mode of operation:

Switch E ON - Selects multi-file assembly.
Switch E OFF - Selects single file assembly.

Single File Assembly
Single file processing can be performed using source input from punched cards or
magnetic tape and requires operator attention between each assembly.
Multi~File Assembly
Multi-file processing can only be performed using source input from magnetic tape.
The card reader will be used to read the file control cards necessary to control the
multi-file assembly process.

FILE CONTROL
. .

The assembler uses SCOD records for file seiection and two consecutive tape marks to
indicate the end of tape.

FILE CONTROL DIRECTIVES
The assembler will recognize three File Control directives. These directives are
always provided to the assembler via card input. The three directives are described
below.

2-32

Table 2-3. Assembler Syntax Error Flags

FLAG MEANING

C PH,r\(",T\"~ f:RROR:
-_. _-
1 . On END card, different number of card-images read in the two phases.
2. L'lbel on this card disagrees with its location in Phase 1.

... - .

E ENTRY ERROR:
ENTF" ')rd found after c;'I1Gr Assembler instructions (in Phase 1 as well).

F FORMAT ERROR: --.. ~--------

1 . Lubel is too long.
2. Operation code is too long.
3. Invalid SD or ID instruction.
4. b~TRY or EXTRN di rec ti ve used in unre)ocatable program.

I INVALI D OPERAND:
1 . Incorrectly specified operand. "", ..
2. Incorrect number of operands.

L ILLEGAL LABEL

M MULTI-DEFINED LABEL:
1 . Label on statement is defined elsewhere.
2. Operand contains reference to multi-defined 1 abe 1 .

0 ILLEGAL OPERATION CODE

U UNDE FINED:
1 . Operand contains reference to undefined label.
2. Operand in Assembler directive was not previously defined (in Phase 1).

V OVERFLOW
Label on statement not saved or given value because of overflowing core
(i n Phase 1).
Label on rejected statement also rejected {Phase 2 only).

-

W WARNING: •

1 • Operand value truncated to one by~e.
2. Negative address generated.
3. Invalid 10 specification in operand.
4. Invalid use of a literal. .

X EXTRN LOST .
Because of overflowing core.

Y ILLEGAL ADDRESS-TYPE DC
Length must be 2 or 4 bytes.

(-33

Select File Call
The Selective File Call directive is used to identify a file to be assembled
from magnetic tape input. The card contains the name (XXXXXX) that appears in
the $$$$COOXXXXXX record. The name (up to six characters) must be left-justi
fied on the input card starting in column one. The cards identifying the
files to be assembled must be ordered in the same manner as their respective
files are ordered on the magnetic tape. For information on the $$$$SCOO re
cords, see the Librarian program in the SYSTEM 2400 Utilities Manual, Form No.
PM-260l.
Mu 1 t i - F i 1 e Call
This directive is used to assemble all files on the magnetic tape, or all re
maining files following the last file specified by a Select File Call direc
tive. The card contains a plus sign (+) left-justified in column one.
End
This directive directs the assembler to cease communications with the card
reader and must be the last card in the File Control card deck. The card con
tains the "/*" symbols (slant and asterisk) left-justified in column one.

OPERATING THE ASSEMBLER
The program is executed in two phases:

PHASE 1:
- Source statements are read.
- The Assembler constructs a table of labels used in the program.

In PHASE 2:
- Source statements are read again.
- The Assembler produces object coding and a listing.

To execute the Assembler:

1. Load the Assembler into cord.
2. Turn on any Sense switches needed.
3. If a multi-file assembly, place file control card deck in card reader.

Press the RUN switch.
If source statements are being read from a card reader, the Assembler will
halt at the end of Phase 1. The operator must place the source statements
back into the input hopper, make sure the reader is ready, then press the RUN
switch to execute Phase 2.
If subsequent assemblies are wanted, return to step 2.

Use of Sense switches and indicator lights is detailed iD Table 2-4.

2-34

ON,

ON,

ON,

ON,

ON,

ON

ON

ON

TABLE 2-4. lights and Switches Used by Assembler

USE OF lIGHT

mount new list tape

if i.n listing routine

if in input routine

if in obj ec t rou ti ne

if I/O error occurs

during assembly

during Phase 2

during Phase 1

LP = LINE PRINTER
CR = CARD READER
MT = MAGNETIC TAPE

NAME

A

B

C

D

E

F

G

H

USE OF SENSE SWITCH

OFF: Normal
ON: Restart Assembler
OFF: listing on Ilp i Device
ON: Lis tin g 0 n I MT I Device l

OFF: Input on 'MT I Device
ON: Input on ICR I Device
OFF: Object Output on 'MT' Device
ON: Object Output Suppressed

~,- -
OFF: Single File Assembly
ON: Multi-File Assembly
OFF: Normal
ON: Listing Suppressed
OFF: Normal or Edit PGM2
ON: Edit PGMl or Edit PGM 4
OFF: Normal or Edit PGMl
ON: Edit PGM2 or Edit PGM 4

I/O ERROR: If an I/O error occurs light E is illuminated as well as C, or D
to indicate which operation failed. Press RUN to continue the
assembly operation and bypass the error condition.

ERROR COUNT: The total number (binary) of errors encountered during the
assembly run is displayed in the indicator lights (A-H).

lWith switch B on, when an end-of-tape is detected, two tapemarks are written,
the tape is rewound, and the program halts. Mount another list tape and press
RUN to complete the assembly.

DEVICE CONFIGURATION
Input - May be on card reader or magnetic tape.
Object Output - May be on magnetic tape or suppressed.
Listing - May be on line printer or magnetic tape or suppressed.

Files on magnetic tape are assigned at the commencement of the run, depending on
sense switch settings (to select devices) and the system configuration. First, the
listing, if on tape, is assigned to MT3 or next-highest available drive. Then, ob
ject output, if produced, is assigned to MT2 or next-highest available drive.
Finally, the input, if on tape, is assigned to MTl or next-highest available drive.

The card reader and line printer are both device 110 11 in their respective classes,
when used.

Un 1 ess a"ll tape dri yes are 'needed fot the execution of the Asscmb 1 er', 1I~1T0'1 is not

used, leaving MT0 free for the master program tape.

If more tape drives are required than exist in the system configuration, the Assem
bler, having determined this) will return to Step 2 of the operating instructions
above.

All possible Assembler configurations are summarized in Table 2~5.

TABLE 2-5. Assembler Configurations
SYSTEM CONFIGURATIONS

: SENSE

SWITCHES 4 (or IOOre) MT's 3 MT's 2 MT's 1 MT

BCD F CRf) LPf) HT" MTl MT2 MT3 CR0 LP0 MT0 MTl MT2 CR0 LP0 MT0 MTl CR0 LPf' MT0

.. • '" i L M 0 ; L M 0 ; L M 0 i L 0
,"1 i M 0 ; M 0 i M 0 i 0

i 11'1., i L MiL Mil. M 0 i L M

, , 1 1 i
f) 1 , ,

.. 1 , 1

.. 1 1 .,

II 1 1 1

1 , "., i
1 , "1 i

1 " 1" i

M ;
L M ; 0

M ; 0

L M i

M i

MOL ;
M o i

M L i

M i

L M ; 0

M ; 0

L M i

M i

MOL i
M o ;
M L i

M M

L i 0 * * *
i 0 * * *

L M ; L ;

M ; ;

o L * * *
M 0 i o
M L i

~1~'~1~1+-i4-~M~-+-4~~'_" ~+-M4-~-+-i M i M
1100 M i 0 L i 0 L ~ * * * * * *
1 1 ., 1 M i 0 M i o,J

1
i 0 * * *

1110 MiL MiL i L * .,. *
1111 M i M i Mi i

LEGEND: i & Input (source)

o • Output (object)

L • Listing
M • Mas ter Program Tape (MPT)

CR • Card Reader

LP • Line Printer

MT • Magnetic Tap~
* ,. Not enough tape drives. program will restart

2-36

Ot3J[~CT cour·: r:1!\p

Figure 2-2 reflects the layout of an object progra~ on object tape.

ZZZZENTRY

ZZZZUCORE

OBJECT
PROGRAM

RELOCATACLE ?ROGRAM ONLY:

Carc- 'i:idges, input to Collector, naming and
defining entry-points in the assembled
program.

RELOCATABLE PROGRAM ONLY:
Single card-image, input to Collector,
giving information for use of core, P-BIAS,
SDAT-Pointer, and IOCS buffer use.

ALL PROGRAMS:
Actual unrelocated program. If no external
labels are required, this portion of the
object deck is executable by hardware load.
If program is not relocatable, this is first
on the object tape.

RELOCATABLE PROGRAM ONLY:
Card-images, input to Collector, indicating
places in object program where external
labels are used.

ALL PROGRAr~S: -------
Sin gl e t~.pe me. rk a fte r eac n pr'ogram fi 1 e
on. a multi-program tape. Two tape marks
after the last program file on tape.

2-37

Provis'ions have been made within the 502 Processor' to interrupt the main pro
gram by even ts whi ch occur asynchronous 1 y wi th ma'j n pr'ogram executi on. The fo 11 ow

ing events can interrupt the processor:

CLASS 1 - ~1onitor interr'l.Ints: dS~;l)ciated v,.Jth input and output buffeY'-ing
,~--~---.;.~- -.-.-~.~

on I/O Se'lector Clldlln:::1s.fhe ini;e·tr'upl: occurs, if enabled,
when an activC! input or' output bui:i.'Ct ~lfjeS from the active
state to ti1nindctive,statc indicating that the buffer is
filled or emptied.

CLASS 2 - Serv-j ce in terruQts: as soci a ted Itii th the peri phe ra 1 devi ces
connected to an 1/0 Se'lector Chann(~l. The interrupt occurs, if
enabled, when the peripheral device sets its interrupt line to
the processor indicating service is required by the device.

CLASS 3 - Special interrupts:' primarily associated with the p~ocessor
hardware itself; machine checks, illegal instructions, and
add on hardware modules. The interrupt occurs, if enabled,
when a unique condition or an error is detected by the hardware
indicating that some action must be taken by the software.

SOFTWARE INTERRUPT LINKAGE

Software interrupt linkage is provided for in the design of the processor's
Program Control Block (PCB) (see Figure A-l). When an interrupt occurs, the cur
rent instruction being executed in the main program is completed and then the
program location pointer (P) is forced to a fixed memory location in the PCB; one
for each class of interrupt. Each of the locations in the PCB reserve four bytes
for an interrupt linkage instruction which, when executed, provides a branch to an
appropriate interrupt handling routine. The interrupt linkage instruction nor
mally is a GOTO Subroutine (GSB) instruction. Execution of the GSB instruction
causes P, the return address to the main program, to be saved in a push-down stack
buffer as specified by the OPl item.

ADDRESS

000-000

000-004

000-010

000-014

000-020

000-022

000-024

000-030

000-034

000-040

000-044

000-050

000-054

000-060

PCB

ARO (SOAT)

ARl

AR2

AR3

PROGRAM POINTER

REAL TIME CLOCK

CLASS 1 INTERRUPT

CLASS 2 INTERRUPT

CLASS 3 INTERRUPT

ARO (SOAT)

AR1

AR2

AR3

~-~
.........

WORKER STATE

ACTIVE RECORDS

EXEC STATE
ACTIVE RECORDS

Fi gur"e A-1. 2408 Processor-Program Control Block.

A-2

H:~~tunl to the m,:tin prcq;-;:in from tf1l:~ -in'L~rrupt: hi.1ncfl'ing toutinr normally is
accoln: 1 i'::lCd by the e~.2cucio~~ ~,d~ an Tntcrl"upt Retutn (;01'0 (GIn) instruction, which

extracts the return address as specified by lhe UPl item from the push-·down stack
bufft:r and places -it;n tho P register. This return dddr0~)s'is the nexLinstruc

tion executed in the main program.

!lQR1~E t</X~{t':.~lrllvE S]"[\II
TL(~ Ptocr~ssor has bA/r) staU:'3 f operation: the Worker State and the Executive

Stat:'), Ft:t<:h st(ltt:~ has a s\:~pay\}tc S(~t of Acti\!{~ l~r~<:Ui'ds in the Progra.m Control
f31ty;k C;:.:;,) F'iguY'() I\~.!). /\dd;''()~)s 000-000 tlll"()~lqh OOO·-lr17 contain the Act'ivG Records
for ·i.,!:t~ t\i{)rkt~r' SLaV;~ acldtc;:;s(,~S 000··,040 through O()(J=057 contain the Active Records

for the Executive State.

On power-up, restart, and P-start, the processor is forced to the Worker
State. The processor is switched to the Executive State by either of the following
methods:

Swap States (SWS) Instruction: This instruction switches the processor
from its curr~nt operating state to the other state.

Interrup~: An interrupt automatically forces the processor to the
Executive State.

The swap states condition is effective immediately when the SWS instruction
is executed while in the Worker State. However, in the Executive State~ one ad
ditional instruction is executed before the processor switches to the Worker State
to allow the execution of an Interrupt Return GOTO (GIR) instruction which references
an AR/I item. For example, the normal exit from an interrupt handling subroutine
is the execution of a SWS instruction 'followed by the GIR instruction.

ENABLE/DISABLE INTERRUPTS
Any or all interrupts may be selectively enabled or disabled by using the

Interrupt Mask (1M) instruction. This instruction is normally used at the beginning
of the program to enable only those interrupts that will be used by the program.
All disabled interrupts are ignored.

SET/CLEAR INTERRUPT LOCKOUT
Interrupt lockout is a condition associated with program instruction execution.

When the interrupt lockout condition prevails, interrupts that occur are saved in
hardwan::~ logic ;;.nd only when the' interTupt lockout condition is cleared does the
progr'alll honor UH:'Sf: in terr'upts . Tht~ i rite Y'rupt lockout cand i ti on may be caused by

A-3

anyone of the following:

• When power is applied to the processor.
• When a RESTART-RUN operation is initiated.
• When an interrupt (Class 1, 2, or 3) occurs.
• When the Set Interrupt lockout (SIl) instruction is executed.

If the program is to use interrupts, a Clear Interrupt lockout (CIl) in
struction m7st be executed.

The execution of this instruction allows only those interrupts enabled by the
Interrupt Mask (1M) instruction to be honored by the processor. All other in
terrupts are ignored. When an interrupt does occur, the processor automatically
locks out all other interrupts until the interrupt lockout condition is cleared.
Normally, ·interrupt lockout is automatically cleared when exiting the interrupt
routine by using the Interrupt Return GOTO instruction. The interrupt lockout con
dition may also be cleared by executing the Clear Interrupt Lockout (CIl) instruc
tion. If the CIl instruction is used within an interrupt handling routine~ the
routines must be nested properly and associated designators stored to insure proper
operation. Usually the CIl instruction is used following a Set Interrupt lockout'
(SIl) instruction. The SIL instruction is used when a portion of the program must
be run without interruption. When completed, the CIl instruction clears the in
terrupt lockout ccndition, allowing interrupts to be honored.

SAVE CONDITION DESIGNATORS & TALLY COUNTER
Upon entering an interrupt handling routine, the Store Tally Counter (STT)

and the Store Designators (STD) instructions are normally the first instructions
to be executed. These two instructions save the condition of the tally counter and
the designators prior to executing instructions to determine the cause of the
interrupt. The interrupt handling routine may use instructions which affect the
condition of the tally counter and designators, thereby destroying their content
as pertaining to main program (worker state). operation. Prior to exiting the in
terrupt handling routine, the load Designators)~d Load Tally Counter instructions
are executed to restore the tally counter and designators to their original con
dition under the worker state.

Condition Designators
The condition designators are contained within a l-byte item and are listed

as follows:

A-4

Bit 27 = I/O Parity Error
26 = Memory Parity Error
25 = Arithmetic Error
24 = Arithmetic Overflow Error
23 = BDMA Parity Error
22 = Greater Than Designator
21 = Abnormal Edit Error
20 = Equal Designator

The GOTD on Designators (GD) instruction may be used to test the individual
bi ts except for bi t 22 - -Greater Than Desi gna tor Set.

Tally Counter
The tally counter is a 2-byte binary counter (see Figure A-2) which counts the

number of data bytes moved or compared by instructions accessing AR/I type operands.
Only the actual data transferred or compared is counted. Character fills or char
acter eliminates are not. Note that any instruction that affects the tally resets
the counter to zero before execution of the instruction. See Appendix D for a
detailed list of the instructions that affect the tally counter.

MSBY LSBY

TALLY COUNTER

Figure A-2. Tally Counter

CLASS 1 - MONITOR INTERRUPTS
Monitor interrupts are associated with data bufferinq on I/O Selector channels.

A monitor interrupt occurs when an input or output buffer on an I/O Selector channel
switches from the active to the inactive state (filled or emptied), provided that
monitor interrupts have been enabled and arS not locked out. The monitor interrupt
can be generated by anyone of the eight I/O Selector channels.

Wh;:~n a mon; tor in terrupt occurs, it forces a branch to address 000-024 whi ch
normally contains a GSB instruction. This instruction, when executed, saves P
and branches to the interrupt handling routine. In the interrupt routine, a series
of GOTO On Channel Interrupt (GCI) instructions may be used to determine which I/O
Selector channel caused the interrupt. The GCI instruction also clears the in
terrupt condition for the I/O Selector channel tested.

A-5

Figure A-3 gives an example of a Monitor Interrupt handling subroutine. Upon
entry, the contents of the tally counter and designators are stored and the I/O
Selector channels are tested to determine which channel had a buffer terminate.
Upon detecting a channel whose buffer terminated, a branch is made to the process
ing portion of the subroutine. When processing is completed, the subroutine re
stores the tally count and designators, swaps states, and returns to the main pro
gram.

This subroutine example shows the channels being tested in order of channel
priority; channel 7, then channel 6, etc. Any order may be used, but the channels
should be tested in an order which gives priority to high-speed buffering devices.
For example, if a disk is connected to channel 4, a magnetic tape unit to channel 6
and a card reader to channel 2, then channel 4 should be tested first~ channel 6
second and channe 1 2 thi rd to effect"j ve"ly servi ce the speeds of the three devi ces.

Note that once an input or output buffer is initiated on a channel, it runs
asynchronously with the main program. With a number of buffers initiated on vari
ous channels, it is possible to get one interrupt (assume channel 4) that forces the
program to the interrupt routine, but prior to testing channel 4, channel 6 also
interrupts. Although interrupts are locked out, if channel 6 is tested before
channel 4, the interrupt on channel 6 will be honored first. In this case, the
channel 6 interrupt is cleared, but not the channel 4 interrupt. On return to the
main program, one instruction is executed and then the channel 4 interrupt is
honored.

CLASS 2 - SERVICE INTERRUPTS
Class 2 service interrupts are generated by peripheral devices connected to

I/O Selector channels. Eight of these interrupts, one for each I/O Selector chan
nel, are available for connected devices. Service interrupts allow a device to
interrupt the processor when it requires special action to be performed by the
processor. To generate a service interrupt, the peripheral device must be able to
set the service request line in the I/O cabl~ connecting it to the I/O Selector

channel. If more than one device capable of generating an interrupt is connected
to the same I/O cable (channel, the programmer must then request status from the
devi ces to determi ne whi ch one caused the ir; tcrrupt.

When a service interrupt occurs, it forces a branch to address 999-030 which
normally contains a GSB instruction (see Figure A-l). This instruction, when
executed, saves P and branches to. the interrupt handling routine. The interrupt

A-6

STORE TALLY
COUNT
(STT)

STORE
DESIGNATORS

(STO)

RESTORE
TALLY COUNT

(LT)

RESTORE
DESIGNATORS

(LD)

SWAP STATES

(SWS)

FROM ADDRESS 000-024
INTERRUPTS ARE LOCKED OUT

PROCESS
CHANNEL 7
INTERRUPT

PROCESS
CHANNEL 6
INTERRUPT

PROCESS
CHANNEL 0
I1~TERRUPT

-- REMOVE INTERRUPT LOCKOUT
RETURN TO MAIN PROGRAt1

Figure A-3. Monitor Interrupt Processing Flow Diagram (px~mple).

routine should be designed to identify the interrupting device by executing a

series of GSI instructions (see Figure A-4), similar to the interrupt routine used

for monitor interrupts.

If more than one device on a given channel can generate the service interrupt,

the interrupting device is identified by requesting status from each device. When
status is requested from the interrupting device, the service request status bit in
the status reply will be set and the device will clear its service request on the
I/O cable. Class 2 service interrupts are handled similar to monitor interrupts
and can be selectively enabled or disabled using the 1M instruction.

CLASS 3 - SPECIAL INTERRUPTS
Cl ass 3 interrupts a r(~ genera ted by speci a 1 condi ti ons in terna 1 to the pro

cessor itself. Provisions have been made to detect up to eight class 3 interrupts.
The interrupt sour'ces ,Ire bit position encoded within a 8-bit byte and are obtained
by using the Store Externa-I Instruction Error (SEE) instruction. The interrupt
sources currently being used are as follows:

BIT POSITION INTERRUPT SOURCE - " -~.- .. --~-- _-u,,,_0-.""--."'-"..e.-.:.,....

F}O
{ , NonL"Opera ti on Sub-Op Code
2" Not i.tS signed
22 Del ta Clock

23 Not ass 'j gned
24 Not assigned
25 Machine Check
26 BDMA Channel 6
27 BDMA Channel 7

When a class 3 interrupt occurs, it forces a branch to address 000-034 which

normally contains a GSB instruction (see Figure A-l). This instruction, when
executed, saves P and'branches to the interrupt handling subroutine.

Figure A-5 gives an example of a Special' Tt -.~rrupt handling subroutine. Upon
entry the contents of the ta lly counter and des i gna tors are stored and then the SEE
instruction is executed to obtain the Class; Interrupt status which always con

sists of a l4-byte item as follows:

A-8

ENTER FROM ADDRESS 000-030
INTERRUPTS ARE LOCKED OUT

STORE TALLY
COUNT

(STT)

STORE
DES I GNATORS

(STD)

RESTORE
TALLY COUr~T

(LT)

RESTORE
DESI GNATORS

(LD)

SWAP STATES

(SWS)

PROCESS
CHANNEL 7
Ir~TERRUPT

PROCESS
CH.L\f'H~EL 6
H~TERRUPT

PROCESS
CHANr~EL 0
Ir~TERRUPT

--. REMOVE INTERRUPT LOCKOUT
RETURN TO t~AIN PROGRAM

Figure A-4. Service Interrupt Processing Flow Diagram (example).

MSBY LSBY
OP3 Byte 1 Byte 21 !Byte 14 I
Byte two contains the bit-encoded interrupt source and is tested by using a

series of GOTO On Designator (GO) instructions to determine the type of interrupt
that had occurred. The order of testing these bits is a function of program
design.

Non-Oper"~,ti ona 1 Sub-Op Code (20)
Assuming a Non-Operation Sub-Op Code error (bit 20 set), a check must first

be made to determine if an illegal sub-op code was detected or if the processor
lacks the hardware module to execute the instruction. This check can be done by
testing the contents of byte 1 in the status item. It contains the sub-op code
that could not be executed. If the suh-op code is illrgal, error indicators may
be displayed and the program halted while still in the interrupt handling routine.
Return to the main program at this time without positively identifying what the
sub-op was supposed to be may cause program instruction execution to be indeter
minate. This point will become apparent in the following discussion relating to
lack of hardware modules.

If the sub-op code is legal but cannot be executed due to lack of hardware~
the programmer may then include additional software to perform the same operation
as the unexecutable sub-op code. The recovery from this condition is simplified
in that the sub-op code and the absolute address limits of the OPl s OP2 and OP3
items are defined in the status item (OP3 of SEE instruction). In addition, the
return address stored in the push-down stack buffer (see GSB instruction) prior to
entering this interrupt handling routine points to the absolute address of the
literal for those instructions (sub~op) having four operands. The literal may be
obtained by using this address and the return address must then be advanced by 1,
such that on return to the main program, instruction execution sequence is in sync
with instruction op codes. This situation can ~'~st be explained by describing in
general what the processor is doing when it executes an Execute External (145)
instruction with a sub-op code. Assume the following Execute External instruction
is to be executed.

A-10

STORE
TALLY COUNT

(STTl

STORE
DESIGNATORS

(STD)

GET CLASS 3
INTERRUPT

STATUS
(SEE)

RESTORE
TALLY COUNT

(LT)

RESTORE
DESIGNATORS

(LD)

SWAP STATES

(SWS)

FROM ADDRESS 000-034
I NTE RRUPTS ARE
LOCKED OUT

GET RETURN
ADR FROM

RETURN STACK
BUFFER

SET ADR
IN NUMERIC

DISPLAY

SET FLAG TO
PROCESS SUB

OP CODE IN r----....J---c:

MAIN PROGRAM
YES

PROCESS SUB- \--________ -1
'lCLEAR FLAG TO

OP CODE IN

GET LITERAL

(OP4)

MAIN PROGRAM
"'----'-

PROCESS DELTA
CLOCK

INTERRUPT

PROCESS
BDMA CH. 6
INTERRUPT

PROCESS
BDMA CH. 7
INTERRUPT

GET CHANNEL -J PARITY ERROR
STATUS
(SCE)

<MEMORY
PARITY

J: NO

<!/O CH.
PARITY
ERROR

"-
<BDMA CH.

PARITY
ERROR

REMOVE INTERRUPT LOCKOUT
RETURN TO MAIN PROGRAM

NO

YES CLEAR BIT 26

IN DESIGNATOR
BYTE

CLEAR BIT 27
IN DESIGNATOR

BYTE

CLEAR BIT 27 YES
IN DESIGNATOR

BYTE

ADD 1 TO
RETURN ADR
IN RETURN

STACK BUFFER

PROCESS
MEMORY
PARITY

INTERRUPT

PROCESS
1/0 CH.
PARITY

INTERRUPT

PROCESS
BDMA CH.

PARITY
INTERRUPT

Figure A~5. Special Interrupt Processing Flow Diagram (example).
A-l1

Multiple Literal Decimal Instruction

DC SUB-OP OPl DP2 OP3 OP4

145 025 AR/I --- AR/I L DC
of next

instruction

Pb - Program Pointer points to beginning of instruction. OC-145 when read
specifies an External Instruction~ Advance to Pl.

P1 - Read SUB-OP code (MLD in this example). Advance to P2.

P2 - Read OPl and gener~te the beginning and ending addresses for operand 1

item. Advance to P3.

P3 - Read OP2 and generate the beginning and ending addresses. for operand 2
item. Note: This step takes place even though OP2 is not used by the
instruction. Advance to P4.

P4 - Read OP3 and generate the beginning and ending addresses for operand 3

item. Advance to P5.

P
5

- At this point the processor passes control to the multiply/divide hard
ware module. The module reads OP4 (literal) from the instruction and
performs the multiply operation. When finished the program pointer is

setting at P
6

and control is returned to the processor.

P
6

- The processor reads up the next instruction (OC) to execute, etc.

The execution of an illegal or unavailable instruction is essentially the same

as described above except for the following:

1. An illegal instruction is detected when the SUB-OP code is read (P l)·
Instruction execution continues and the beginning and ending addresses for
operands OP1, OP2 and OP3 are generated advancing the program pointer to
P5' At this time the class 3 interrupt occurs. Operand OP4 is not read.

2. An unavailable instruction (hardware module missing) is detected after
operand OP3 has been ~ead and its beginning and ending addresses generated.
The program pointer is at P

5
" At this time tk: class 3 interrupt occurs.

Operand OP4 is not read.

A-12

When the class 3 interrupt occurs, the contents of the program pointer (now
at P5 in example) is saved. The processor switches to the Executive State and the
program pointer is forced to 000-034: the location of the next instruction to
execute. At address 000-034, the programmer should have a GaTO Subroutine (GSB)
instruction. This instruction, when execut~d, causes the program (worker state)
return address (P5) to be stored into the Push Down Stack Buffer and a branch is
made to the programmer's subroutine to determine the cause of the class 3 inter
rupt Return (GIR) instruction is used. This instruction, when executed, takes
the last program pointer address (P5) from the Push Down Stack Buffer and forces
it in the P register as the address of the "next instruction to be executed in the
worker state. With regard to the example above, the processor uses OP4 as the
operation code (OC) for the next instruction to be executed. As a result, the
instruction execution sequence is indeterminate.

To recover from the above situation, the programmer must add one (+1) to the
return address (P5) located in the Push Down Stack Buffer prior to return to the
main program (worker state). In essence, the program pointer must be advanced to
P6 in the example above.

Although the primary function of being able to detect an illegal or unavailable
sub-op code is program recovery, the feature may also be used by the programmer to
obtain absolute addresses for specific AR/I operands. All that is required is to
execute an Execute External (145) instruction with an illegal sub-op code (i.e.,
176 or 177) and specifying up to three AR/I operands. The interrupt handling sub
routine executes the SEE instruction to obtain the absolute addresses for the
specified AR/I operands. The above technique may also be used to switch the pro
cessor from thn Worker to the Executive state.

Delta Clock (22)

This bit if set indicates that the Delta Clock has counted down to zero (see
LC ins truct-j on) .

Machine Check (2 5)

A machine check interrupt occurs if the processor detects a parity error under
the following conditions:

Memory Parity - A parity error was detected while reading a byte from
core memory.

A-13

I/O Channel Parity A parity error was detected while recelvlng a data
or status byte from the peripheral device connected
to an I/O Selector channel.

SOMA Channel Parity A parity error was detected while receiving a data
or status by~e from the peripheral device connected
to a BOMA channel~ or a parity error was detected in
the address furnished by the device connected to
the BOMA channel in either a read or write memory
cycle.

A GOTO On Designator (GO) instruction may be used to distinguish between the
above parity errors. If an I/O or BOMA channel parity error, the Store Channel
Parity Error (SCE) instruction may be executed to obtain additional status as to
which I/O or BOMA channel caused the interrupt. In addition, the BOMA channel
parity error is categorized as a data or status byte parity error or as an address
parity error.

NOTE:

1. The following rule must be adhered to when processing
a Machine Check interrupt:

Clear the corresponding bit in the designator
byte prior to exiting the interrupt sub
routine (see Figure A-5).

If the bit is not cleared~ the processor, upon return
to the Worker state, will detect the bit set and auto
matically generate another class 3 interrupt, forcing
the program back to the interrupt handling subroutine.

2. The I/O PAR CK indication on the Processor Panel for
the 2408 Processor indicates that a parity error has
been detected on a processor I/O channel or a BOMA
channel during a status or data transfer from a peri
pheral device. An address with bad parity transferred
from ~ peripheral device on a BOMA channel also lights
the indicator. The programmer, via software methods,
may determine the exact cause of the parity error as
described above.

A-14

APPENDIX B

PROGRAMMING ACTIVE RECORDS

The inherent design of address generati~n for Active Record Items in the
processor logic allows the programmer to load one or more Active Records (AR's)
with the execution of one Load Active Record instruction.

Existing documentation describes the Load Active Record instructions on a
one-for-one basis:

LRl Loads Acti ve Record (AR1)
LR2 Loads Active Record 2 (AR2)
LR3 Loads Active Record 3 (AR3) and
LSP Loads the Storage Descriptor Area Poi nter (ARO)

The format for the above instructions consists of an op code and one operand
which specifies a four-byte item in the Storage Descriptor Area Table (SDAT). The
location of the SDAT table is defined by the contents of ARO which is loaded during
initial program load. Active Records l~ 2 and 3 are then loaded from the SDAT
table usiQg the LR1, LR2 and LR3 instructions. The SOAP table~ whose location is
specified by the contents of ARO (bytes 0 and 1), does not require an Item Descrip
tor Table (IDT)~ since ARO when used as an operand in an instruction always
specifies a four-byte item (hardware design). As a result~ the LR1, LR2~ LR3 and
LSP instructions can only load one AR in the PCB if the operand specifies ARO as
the Active Record.

Basically, the LR1~ LR2, LR3 and LSP instructions are a move ri9ht-aligned
instruction. The Operation Code (OC) specifies the beginning location into which

-~--the first byte of the item specified by OPl is moved. The number of bytes moved
is determined by the following factors:

If OPl specifies ARO in OP1, then only four bytes are moved.

If OPl specifies AR1, AR2 or AR3, then the item length determines the
number of bytes moved.

Assume the following instruction is being executed:

8-1

DC OP1

LR3 R - where R specifies an item in the SOAT table.

175 005

SOAT PCB

001-000 J 000-000
Item 0

001 000

XXX XXX]
AR0

(SDAT Printer)

J Item 1 J ARI

J Item 2] AR2

J Item 3
001 000

005 000
} AR3

I

I

I
t J Item 4

001 I 000 I

005 : 000
] Item 5

~~ r -

When the above instruction is executed, item 5 (Record Descriptor) in the
SDAT table is moved right-aligned into AR3 of the PCB. Since the OPl item in the
above instruction specified ARO as the active record, only 4 bytes are moved.

Assume the next·instruction to be executed is also an LR3 instruction and the
following conditions exist:

e The record' described by item 5 in the SDAT overlays the SDAT itself.

e The lOT for record 5 is located at address 005-000 and contains the
item descriptors as illustrated (item' 0 through 12), and

eThe programmer wishes to load ARO, AR1, AR2, and AR3 with different values
(item 6 of record 5) using the one LR3 instruction.

8-2

OC OPl

LR3 AR/ I

175 306

- where AR/I specifies Active ~cord 3 and
item 6 of record 5.

When the instruction is executed, item 6 of record 5 is moved right-aligned
into the PCB until address 000-000 is filled, and the remaining four bytes (AAA,
AAA,PAA,AAA) are moved to the last four bytes of memory (377-374 through 377-377
in a 65K memory).

Record 5

001-000 AAA AAA
AAA AAA
BBB BBB
BBB BBB
CCC CCC
CCC CCC
DOD DOD
DOD DOD
EEE EEE
EEE EEE
001 000
005 000

--.;;:

I
I

} oItems

}l }11
10

}2 6

}3 7

}4 12

}5

B-3

000-000
2
4
6

10
12
14
16

000-000
2

4

6

10
12
14

16
20

377-374
377-376

PCB (before)

001 000
XXX XXX
XXX I XXX
XXX XXX
XXX I '-XXX

I

XXX XXX
001 000
005 000

~.

PCB (after)

BBS : BBS
BBS ~ BSS
CCC I

I CCC
CCC I

I
CCC

DOD DOD
DOD DOD
EEE EEE
EEE EEE

{J

AAA: AAA

AM I
I

AAA

} ARO

} ARI

} AR2

} AR3

} ARO

} . ARI

} AR2

} AR3

In general~ the above philosophy allows loading one or more AR's with one
Load Record instruction as follows.

Instruction Record Item AR's Loaded

Length (bytes)

LR3 4 AR3
LR3 108 AR3, AR2
LR3 148 AR3 t AR2, ARl
LR3 208 AR3, AR2, AR1, ARO
LR2 4 AR2
LR2 108 AR2, ARl
LR2 148 AR2, ARl t ARO
LRl 4 ARl
LRl 108 AR1, ARO
LSP 4 ARO

The-above discussion was directed toward the processor Worker State. The
same philosophy applies to the Exec State.

The above discussion also illustrated the SDAT table with a record overlay.
This need not be, it may be a different record or records as long as the overall
programming architecture of the processor is followed.

8-4

APPENDIX C - EBCDIC CODE
Bit Octal Bit Octal

Char. 765 4 3 2 1 0 Code Char. 7 6 5 4 321 0 Code

A 1 1 0 0 o 0 0 1 301 6 1 1 1 1 o 1 1 0 366

B 1 100 001 0 302 7 111 1 o 1 1- 1 367

C 1 100 a all 303 -8 1 1 1 1 1 000 370

0 1 100 o 1 o 0 304 9 1 111 1. a 0 1 371

E 1 100 o 1 a 1 305 Space o 1 0 0 o 0 0 0 100

F 1 1 a a o 1 1 0 306 ~CD o 1 0 0 101 0 112

G 1 100 o 1 1 1 307 . o 1 0 0 1 o 1 1 113

H 1 1 o 0 1 0 0 0 310 -<: o 1 0 0 1 100 114

I 1 1 o 0 1 0 0 1 311 (o 1 0 0 1 1 o 1 115

J 1 1 a 1 000 1 321 + a 1 0 0 1 110 116

K 1 1 a 1 001 a 322 I® o 1 0 0 1 1 1 1 117

L 1 1 a 1 001 1 323 & o 1 0 1 000 0 120

M 1 1 o 1 o 1 o 0 324 10) o 1 0 1 101 0 132

N 1 1 0-.1 o 1 o 1 325 $ o 1 0 1 1 01 1 133

0 1 1 o 1 a 1 1 a 326 * o 1 0 1 1 100 134

P 1 1 o 1 a 1 1 1 327) o 1 0 1 1 1 o 1 135

Q 1 1 o 1 1 000 330 ; o 1 0 1 1 1 1 0 136

R 1 1 o 1 1 0 a 1 331 ® o 1 0 1 1 1 1 1 137 -,
S 1 1 1 0 001 0 342 - o 1 1 0 o 0 0 0 140

T 1 1 1 0 o a 1 1 343 / o 1 1 0 000 1 141

U 1 1 1 0 o 1 0 0 344
I o 1 1 a 1 0 1 1 153

V 1 1 1 a o 1 a 1 345 % o 1 1 0 1 100 154

W 1 1 1 0 o 1 1 0 346 - o 1 1 0 1 1 0 l 155

X 1 1 1 0 o 1 1 1 347 - o 1 1 0 1 1 1 0 156 /

Y 1 1 1 0 100 a 350 ? 0-- 1 1 0 1 1 1 1 157

Z 1 1 1 0 1 0 a 1 351 . o 1 1 1 101 0 172 .
0 1 1 1 1 000 a 360 # o 1 1 1 1 a 1 1 173

1 1 1 1 1 o a 0 1 361 @ o 1 1 1 1 100 174

2 1 1 1 1 001 0 362 I o 1 1 1 1 1 0 1 175

3 1 1 1 1 001 1 363 = a 1 1 1 1 1 1 0 176

4 1 1 1 1 a 1 o a 364 II o 1 1 1 1 1 1 1 177

5 1 1 1 1 a 1 0 1 365 * 1 1 1 0 000 0 340

Null 000 a o 0 0 0 000

+ Sign 1 1 1 1 x x x x Substitute Codes

- Sign 1 1 0 1 x x x-x CD] ~ ~ @/\

C-1

APPENOIX·O

TALLY COUNTER -

INSTRUCTION EXECUTION

0-1

Op Code
Octal Mnem.

000 M

001 MR

*003 MED

004 MF

w 005 MRF
>
0
::::
c::r: 006 MJ f-
c::r:
£::)

007 MRJ

140 TRL

141 ML

*050 MPK

*052 MUP

021 GGT

022 GLT

023 GNE

(.!:I 024 GE
Z
I-i

:r: 025 GNL u
z
.:::(
c:r:: 026 GNG co

027 G

030 GO

I 031 GS

* 502 t~ode Only

TALLY COUNTER -
INSTRUCTION EXECUTION

Instruction

Move~ Left-Align,
No Fill

Move, Right-Align,
No Fill

Move, Edit

Move, Left-Align,
Fill

Move, Right-Align,
Fill

--

Move, Left-Jus ti fy
Fill

Move, Ri ght-Jus ti fy
Fill

Translate Code
---,----------

Move Literal

Pack

Unpack

GOTO Greater Than

GaTa Less Than

GaT a Not Equal

GaTa Equal

GOTO If Not Less Than

GOTO If Not Greater
Than

GaTa Unconditionally

GOTO On Designators
I

GOTO On Switches

0-2

Ta 11y Counter
Clear & Count Clear On1v

X
-

X

X

X

X

X

X

X

X

X

X

- -

- -
- -

- -

- -

- -

- - I

I

-
I

- I

- -

Op Code
Octal Mnem.

*061 GBG

*062 GBl

*063 GBN

*064 GBZ

*065 GGBE

*066 GlBE
~
:z::
I-t *071 GDG ::J: u
:z::
c::(
a:::
co *072 GDl

*073 GON

*074 GDZ

*075 GGDE

*076 GlOE

*170 GCT

*172 GTB

*173 GRT

*176 GSB

044 CB

w 046- CB a:::
c::(
a..
:E: 142 CAN 0
u

144 CL

* 502 Mode Only

TAllY COUNTER -
INSTRUCTION EXECUTION

(continued)

Instruction

GOTO Binary Greater
Than

GOTO Binary less Than

GOTO Binary Non Zero

GOTO Binary Zero

GOTO Binary Zero

GOTO Binary Zero

GOTO Decimal Greater
Than

GOTO Deci rna 1 less Than

GOTO Decimal Non Zero

GOTO Decimal Zero

GOTO Decimal Zero

GOTO Decima 1 Zero

GOTO On Count

GOTO Table
(Indirect Branch)

Return GOTO

GOTO Subroutine

Compare Bi nary

Compare Decimal

Compare Alphanumerics

Compare litera 1

0-3

Ta 11y Counter
C1 ear & Count Clear Only

- -

- -
- -
- -
- -
- -

- -

- -
- -
- -
- -
- -
- -
- -

- - .

- -

X

X

X

X

Op Code
Octal Mnem.

040 TBS

042 TDS

I-
150 TI

(/)
lLJ 151 TL I-

152 TM

*153 TIM

100 INS

104 EF

105 OTS

*106 EFS

107 GA

I- 110 STC
::>
0-
I-
::>
0 *111 STR
'" I-
::>
0- *112 INR z
.......

114 IN

115 OUT

*116 OTR

000 RN .
--l W
c::(U')
0:: 0 020 NOP W 0-
za:::
W :::>
t!J 0- *124 STD

* 502 Mode Only

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)

Instruction

Test Binary Sign

Test Deci rna 1 Sign

Test Item

Test Literal

Test Mask

Test Item Mask

Special In

External Function On
Channel

Special Out

External Function
Special

GOTO On Channel Active

Store Channel Control
Reg; ster

Store Channel Reverse

In i ti ate Input Reverse

Initiate Input On
Channel

Initiate Output On
Channel

Initiate Output
Reverse
Rename

No Operation

Store Designators

0-4

Ta lly Counter
Clear & Count Clear Only

X

X

X

X

X

X

- -
- -

- -

- -

- -

- -

- -
- -

- -

- -

- -

X

- -

- -

Op Code
Octal Mnem.

014 CP

015 CPR

(.!J 120 APR
z:
t-......
c 121 APA w
....J
ct: 122 APE
t-
z: r---
W 130 EXV :::>
0-w
V')

131 EXP

132 EX

133 EXA

*160 X

*162 RCK
....J
c:(
u
(.!J *164 0 0
-I

*166 N

*113 GSI

*117 GCI

I- *154 SWS
a..
::::>
0:: *155 SIl 0::
w
I-
z *157 CIl 1-1

)'(174 1M
*'177 GIR

* 502 Mode Only

TAllY COUNTER -
INSTRUCTION EXECUTION

(continued)

Instruction

Compress Item~ Left-
Align, Fill

Compress Item~ Right-
Ali gn ~ Fi 11

Append~ Right-
E1 imi na te

Append, Advance'

Append, Left-E1 imi nate

Extract Variable
Length Item, Fill

Extract Previous Item

Extract Item

Extract Item, Advance

Exclusive OR

longitudinal
Redundancy Check

logical OR

logical AND

GOTO On Service
Request

GOTO On Channel
Interrupt

Swap States

Set Interrupt Lockout

Clear Interrupt Lockout
Interrupt Mask
Interrupt Branch GOTO

0··5

Ta11v Counter
Clear & Count Clear Only

X

X

X

X

X

X

X

X

X

- -

- -

- -

- -

- -

- -

- -
- -
- -
- -
- -

Op Code
Octal Mnem.

*126 LD

*134 STT

*136 LT

143 H

146 SOl

w
V') *147 GAP 0
a..
~
:::>
a..
-J 156 cor
~
w
z
w *161 LSP t!:I

*165 LRl

*171 LR2

*175 LR3
U
t-4

f- 041 AB UJ :s
:x:
f- 045 SB t-4

~
c::(

>- 051 ALB
0:::
c:(
z: 055 SLB I-f
co

u
I-f 043 A I-
lLJ
::E
::c 047 S I-......
0:::
c::x: 053 AL
....J

~ 057 SL
u
lLJ
0

* 502 Mode Only

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)

Instruction

Load Designators

Store Tally Counter

Load Tally Counter

Halt

Set Display
Indicators

No Operation Leave
Gap

Clear Display
Indicators

Load Storage
Descriptor Pointer

Load Active Record 1

Load Active Record 2

Load Active Record 3

Add Binary

Subtract Bi nary

Add Literal Binary

Subtract Literal
Bi nary

Add Decimal

Subtract Decimal

Add Literal Decimal

Subtract Litera 1
Decimal

0-6

Tally Counter
Clear & Count C1 ea r On lv

- -
- -
- -
- -
X -

- -

X

- -

- -

- -

- -

X

X

X

X

X

X

X

X

Op Code
Octal Mnem.

"'°004 LC

*014 SEE

*015 SCE

*020 MB
LO
~
r- *021 MLB

I

u
0

V> *022 DB
z
0
..-t *023 DLB I-u
::::>
0:::
l-
V> *024 MD z
..-t

LLI *025 MLD I-
::::>
u
LLI
x
LLI *026 DO
-l
c:(
z *027 DLD 0:::
LLI
l-x
LLI

*030 BTD

*031 DTB

*034 SDR

*035 SBR

* 502 Mode Only

TALLY COUNTER -
INSTRUCTION EXECUTION

(continued)

Instruction

Load Delta Clock

Store External
Instruction Error

Store Channe 1
Parity Error

Multiply Binary

Multiply Literal
Bi nary

Di vi de Bi nary

Div'ide Literal
Binary

Multiply Decimal

Multiply Literal
Decimal

Di vi de Deci rna 1

Divide Literal
Decima 1

Binary to Decimal

Decimal to Binary

Store Decima 1
Remainder

Store Binary
Rema i nder

D-7

Tally Counter
Clear & Count Clear Only

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

APPENDIX E
INSTRUCTION :~~CUTION TIfvlES ".ND PROCESSOR 1'10DELS

The instruction execution times vary,
of data bytes manipulated. Table E-'j

cution time of the instructions whei ' "

'il~ ;)nont.h~ instruction dnd t.he number

:'/0-S the formulae for calculating the exe-
1~ processor is used.

The following symbology is used: table:

A = Number of bytes III the space described by operand A.

8 = Number of bytes in the space described by operand B.

C = Number of bytes in the space described by operand C.

S(p,q) = Number of bytes in the shorter of the spaces described by
operands "p" and "q".

L(p,q) = Number of bytes in the longer of the spaces described by
operands lip" and "q".

N = Number of bytes to be eliminated in operand A (in APR, APE
instructions).

X = Number of bytes compared or tested (in CAN, CL, Tl, TL instructions)

In CAN: If equal, X=B;
If unequal,X=the number of bytes in '8' compared until
inequality is established.

In T1 or TL:If equal,X=the number of bytes in 'A' compared until
value is found.

In CL:
If unequal,X=A.
If equal, X=A.
If unequal,X=the number of bytes in 'A' compared until
inequality is established.

Table E-1. Formulae for Execution Times of the 501A Processor

OP CODE

OCT

000
001
004
005
006
007
140
141

020
021
022
023
024
025
026
027
030
031

044
046

142
144

MNE

M

MR
MF
MRF
MJ

MRJ
TRL
ML

NOP
GGT
GLT
GNE
GE
GNL
GNG
G

GO

GS

CB

CD

CAN
CL

EXECUTION TIMES (in microseconds)

DATA MOVE
30 + 4*S(A t B)
30 + 4*S(A t B)
32 + 2*S(A,B) + 2*B
32 + 2*S(A,B) + 2*B
32 + 2*S(A,B) + 2*B
32 + 2*S(A,B) + 2*B
44 + 8*S(A,B)
18 + 2*A

BRANCHING
6 (no jump possible)
10 if jumpt 6 if no jump
10' if jump, 6 if no jump
10 if jump, 6 if no jump
10 if jump, 6 if no jump
10 if jump, 6 if no jump
10 if jump, 6 if no jump
10
1s if jump, 8 if no jump
12 if jump, 8 if no jump

COMPARE
30 + 2*S(A,B) + 4*L(A,B)
If signs are alike, 30 + 2*S(A,B) + 4*L(A,B)
If signs are unlike, 36
30 + 4*X
18 + 2*X

E-2

Table E-1. Formulae for Execution Times of the SOlA Processor
(continued)

--_ .. _-_. __ .-. -'--"'

I OP CODE
OCT MNE EXECUTIGr-L -; T r'~ES (in microseconds)

-----.. -.. --~--

TEST
040 TBS 18
042 TOS 18
150 T1 32 + 2*X
151 TL 18 + 2*X
152 TM 20

INPUT /OUTPUT
100 INS 32 + 2*B
104 EF 46 + 8*B
105 OTS 32 + 2*B
107 GA 26 if j umpt 22 if no jump

110 STC 38
114 IN 36
115 OUT 36

GENERAL
000 RN 46
143 H 2 .

146 SOl 18
156 COl 18
161 LSP 32
165 LR1 32
171 LR2 32
175 LR3 32

E-3

Table E-l. Formulae for Execution Times of the 501A Processor
(continued)

OP CODE
OCT MNE EXECUTION TIMES (in microseconds)

041
045
051
055

043

047
053

057

AB
SB
ALB
SLB

A

S

AL

SL

BINARY ARITHMETIC
44 + 2*S(A,C) + 2*S(B,C) + 2*C
44 + 2*S(A,C) + 2*S(B,C) + 2*C
36 + 2*A + 2*B
36 + 2*A + 2*B

DECIMAL ARITHMETIC
If signs are alike, 44 + 2*S(A,C) + 2*S(B,C) + 2*C
If signs are unlike, 46 + 2*S(A,C) + 2*S(B,C) + 6*C
If signs are unlike, 46 + 2*S(A,C) + 2*S(B,C) + 6*C
If signs are alike, 36 + 2*A + 2*B
If signs are unlike, 38 + 2*A + 6*B
If signs are unlike, 38 + 2*A + 6*B

~---+----*----------.

014
015
120

121

122

130

131
132
133

CP
CPR
APR

APA

APE

EXV

EXP
EX
EXA

SEQUENTIAL EDITING
34 + 2*S(A,B) + 2*B
34 + 2*S(A,B) + 2*B
If all source bytes are eliminated, 36 + 2*A
If designators are set, 38 + 4*S(A,B) - 2*N
If designators are not set, 44 + 4*S(A,B) - 2*N
If designators are set, 34 + 4*S(A,B)
If designators are not set, 40 + 4*S(A,B)
If all source bytes are eliminated, 36 + 2*A
If designators are set, 36 + 4*S(A,B) - ?*N
If designators are not set, 42 + 4*S(A,B) - 2*N
If no designators are set, 46 + 2*S(A,B) + 2*B
If 'EQUAL I is set, 40 + 2*B
If 'ABN EDITI is set, 40 + 4*B
If IEQUAL I and IABN EDITI are set, 38 + 4*S(A,B)
42 + 4*S(A,B)
34 + 4*S(A,B)
40 + 4*S(A,B)

E-4

Table E-2 gives the formulae for calculating the execution time of the
instructions when a 502~ 502A or 502B i~ ~per1ting in the processor. 1 - micro
second cycle time. When the 502, 502,~ CJr 50.28 process~~" is operating in the 2 -
microsecond cycle timet the calculated t·i;pl? are doubled. The same symbol,ogy is
used a3 in table E-1.

E-5

Table E-2. Formulae for Execution Times of 502, 502A & 502B Processors
Op Code

Octal Mnem.
000 M
001 MR

*003
004
005
006
007

*050
*052
*140

141
020
021
022
023
024
025
026
027

MEO
MF
MRF
MJ
MRJ
MPK
MUP
TRl
Ml
NOP
GGT
GlT
GNE
GE
GNL
GNG
G

030 GO
031 GS

*061 GBG
*062 GBl
*063 GNB
*064 GBZ
*065 GGBE
*066 GlBE
*071 GOG
*072 GDl
*073 GDN
*074 GDZ
*075 GGDE
*076 GlDE
*170 GCT
*172 GTB
*173 GRT
*176 GSB

* 502 Mode Only

EXECUTION TIMES (in microseconds)
7 + 2 S(A,B)
7 + 2 S(A,B)
12 + N + 2(X-N) + M + C
8 + S(A,B) + B
8 + S(A,B) + B

8 + S(A,B) + B
8 + S(A,B) + B
7 + 2 S(A,B) + C
7 + S(A,B) + 2 C
10 + 4 S(A,B)
5 + A

1

5 if jump, 3 if no jump
5 if jump, 3 if no jump
5 if jump, 3 if no jump
5 if jump, 3 if no jump
5 if jump, 3 if no jump
5 if jump, 3 if no jump
5 if jump, 3 if no jump
6 if jump, 4 if no jump
6 if jump, 4 if no jump

- 8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump 6 + A if no jump
8 + A if jump, 6 + A if no jump
8 + A if jump, 6 + A if no jump
10 if jump, 8 if no jump
14 if jump, 9 if no jump

12
16

E-6

Table E-2. Formulae for Execution Times of 502, 502A and 5028 Processors
(continued) - -

Op Code
Octal Mnem. EXECUTION T1MES (in microseconds)

.00 -
044 CB 7 + S(A,B) + 2 L(A,B)

w 046 CD If signs rl re alike, 7 + S(A,B) + 2 L(A,B)
~
c:(If signs are unlike, 10 0-
:E
0 142 CAN 7 + 2 X u

144 CL 5 '" • 1\

040 TBS 5
042 TOS 5

I- 150 TI 8 + X
V')
w 151 TL 5 + X I-

152 TM 6
*153 TIM 8 + X

100 INS 8 + B
104 EF 11 + 4 B
105 OTS 8 + B

I-
106 EFS 8 + B

::::>
107 GA 7 if jump, 9 if no jump 0-

I-
::::> 110 STC 10 0
.........
I- *111 STR 10 ::::>
0-
z *112 INR 10 ~

114 IN 10
115 OUT 10

*116 OTR 10
000 RN 15

*124 STD 5

*126 LD 5

w *134 SIT 5
V')

*136 LT 5 0
0-
~

143 H 1 ::::>
0-

...J 146 SOl 5
c:(
0:::

*147 GAP 1 w
z
w

156 (,!) CD! 5
*161 LSP 11
*165 LR1 11
*171 LR2 11
*175 LR3 11

- _0 ______ • __

* 502 Mode Only £-7

...J
c:(
u
~

(!j
.0

...J

(!j
z
~

I-
~

o
W

...J
c:(
~

t
Z
w
:::>
CY
w
V")

Table E-2. Formulae for Execution Times of 502, 502A and 5028 Processors
(continued)

Op Code
Octal Mnem.
*160 X
*162 RCK
*164 0
*166 N

041 AB
045 SB
051 ALB
055 SLB
043 A

047 S

053 AL

057 SL
014 CP
015 CPR
120 APR

121 APA

122 APE

130 EXV

131 EXP
132 EX
133 EXA

EXECUTION TIMES (in microseconds)
10 + 3 S(A,B,C)
8 + S(A~B)

10 + 3 S(A,B,C)
10 + 3 S(A,B,C)
10 + S(A,B) + L(A,B) + C
10 + S(A,B) + L(A,B) + C
8 + A + B

8 + A + B

If signs are alike, 10 + SeA,S) + L(A,B) + C
If signs are unlike, 11 + S(A,B) + L(A,B) + 3 C
If signs are unlike, 11 + S(A,B) + L(A,S) + 3 C
If signs are alike, 8 + A + B
If signs are unlike, 9 + A + 3 B
If signs are unlike, 9 + A + 3 B
9 + S(A,B) + B
9 + S(A,B) + B
If all source bytes are eliminated, 10 + A
If designators are set, 11 + 2 S(A,B) - N
If designators are not set, 14 + 2 S(A,B) - N
If designators are set, 9 + 2 SeA,S)
If designators are not set, 12 + 2 SeA,S)
If all source bytes are eliminated, 10 + A
If designators are set, 10 + 2 SeA,S) - N
If designators are not set, 13 + 2 SeA,S) - N
If no des; gnators are set, 15 + SeA,S) + S
If 'EQUAL' is set, 12 + S
If 'ABN EDITI is set, 12 + B
If 'EQUAL' and 'ABN EDITI is set, 11 + 2 S(A,B)
13 + 2 S(A,B)
9 + 2 S(A,B)
12 + 2 S(A,B)

* 502 Mode Only

E-8

t-
a...
::>
a:::
a:::
U..J
t-.
Z
~

L()

~ ,....
I

u
0

V)
z
0
t-4
t-
U
:::>
0:::
t-
V)
Z
t-4

w
t-
:::>
u
w
x
U..J

-J
ct:
Z
0:::
U..J
t-
x
U..J

Table E~. Formulae for Execution Times of 502, 502A & 502B Processors
{continued

Op Code
Octal Mnem. EXECUT10:l TI!·;[S (i n mi croseconds)
*113 GSI 7 if jump, 9 if no jump

*117 GCl 7 if jump. 9 if no jump

*154 SWS 34
*155 Sll 2

*157 CIl 2

*174 1M 5
*177 GlR 15

*004 lC 12
*014 SEE 24
*015 SeE 11
*020 MB 31 + 2 L(A,B) + 2 S(A,B) + 2 C
*021 MlB 33 + 2 l(A,B) + 2 B
*022 DB 30 + 2 [L(A,B) + S(A,B) + C]
*023 OLB 32 + 2 [L(A,B) + B]
*024 MD 79 + 2 [l(A,B) + S(A,B) + C

*025 MLO 81 + 2 l(A,B) + B
*026 DO 54 + 2 [l(A,B) + S(A,B) + C

*027 OLD 56·+ 2 L(A,B) + B
*030 BTD 58 + 2 L(A,B) + B
*031 DTB 10 + 2 [L(A~B) + BJ
*034 SDR 39 + A
*035 SBR 15 + 2 A

* 501 Mode Only

E -. 'J

Table E-3 indicates the processor that can execute each instruction. The follow
ing processors are listed.

* 501
* 502
* 502A
* 502B

Currently~ the correlation of System to Processor is as follows:

Systems

2404
2405
2408
2409-1

Processor

502
501A or 502
502A or 5028
5028

An "X" in Table E-3 indicates that the processor can execute the instruction.

Table E-3. Instruction Set and Processor Model

,,~

OP Code Processor
"- ,----

OCT MNE Instruction 501 A 502 502P, 502B
"_._'. ~~".--, ~

000 M Move~ Left-Align, No Fill X X X X

001 MR Move, Right-Align, No Fill X X X X

003 MED Move, Edit NO X X X

004 MF Move t Lift-Align, Fill X X X X w
>- 005 MRF Move, Right-Align, Fill X X X X 0
:E
e:(006 MJ Move~ Left-Justified, Fill X X X X
l-
e:(007 MRJ Move, Ri gh t-Jus ti fi ed ~ Fill X X X X 0

050 MPK Move, Pack NO X X X

052 MUP Move, Unpack NO X X X

140 TRL Trans 1 a te Code X X X X

141 ML Move Litera 1 X X X X

E-10

OP Code
OCT MNE
020 Nap

021 GGT
022 GlT
023 GNE
024 GE
025 GNL
026 GNG
027 G
030 GO
031 GS

(!l
z 061 GBG ~

:.c
u 062 GBl z
c::(
~ 063 GBN co

064 GBZ
065 GGBE
066 GlBE
071 GOG
072 GDl
073 GDN
074 GDZ
075 GGDE

170 GCT
172 GTB
173 GRT
176 GSB

Table E-3. Instruction Set and Processor Model
(continued)

--
~ Processor

Ins tructi on 501 Afs02 ·-502A --_._-
No Operation X X X

GOTO Greater Than X X X

GOTO less Than X X X

GOTO Not Equal X X X

GOTO Equal X X X

GOTO Not Less Than X X X

GOTO Not Greater Than X X X

GOTO Unconditionally X X X

GOTO on Designators X X X

GOTO on Switches X X X

GOTO Binary Greater Than Zero NO X 'X

GOTO Binary less Than Zero NO X X

GOTO Binary Non Zero NO X X

GOTO Binary Zero NO X X

GOTO Binary Equal/Greater Than Zero NO X X

GOTO Binary Equal/Less Than Zero NO X X

GOTO Dec; rna 1 Greater Than Zero NO X X

GOTO Decimal Less Than Zero NO X X -,

GOTO Decimal Non Zero NO X X

GOTO Decimal Zero NO X X

GOTO Deci rna 1 Equal/Greater Than NO X X
Zero
GOTO on Count NO X X

GOTO Table NO X X

Return GOTO NO X X

GOTO Subroutine NO X X

[-11

5028

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

or Code
OCT MNE

LLJ
0:: 044 CB ~ a..
:E: 046 CD 0
u

142 CAN
144 CL

040 TBS
042 TDS
150 TI

t- 151 TL V')

~ 152 TM
153 TIM

100 INS
104 EF

t-
:::> 105 OTS 0..
f-
:::> 106 EFS 0
"-t- 107 GA :::>
0..
z 110 STC ~

111 STR
112 INR
114 IN
115 OUT
116 OTR
145 -
000 RN

LLJ
124 SID

VI 126 LD 0
0-
0:: 134 STT :::>
0-

-l 136 LT
~ cr 143 H LJ.J
z w 146 SOl c.!)

147 GAP
156 COl
161 LSP
165 LRI
171 LR2
175 LR3

Table E-3. Instruction Set and Processor Model
(continued)

Processor
Instruction 501 A 502 502A

Compare Bi nary X X X
Compare Deci rna 1 X X X

Compare Alphanumerics X X X

Compare Litera 1 X X X

Test Binary Sign X X X
Test Decimal Sign X X X

Test Item X X X
Test Literal X X X
Test Mask X X X
Test Item Mask NO X X

Special In X X X

External Function on Chan. X X X

Special Out X X X

External Function Special NO X X

GOTO on Channel Active X X X

Store Chan. Control Register X X X

Store Channel Reverse NO X X

Initiate Input Reverse NO X X

Initiate Input on Chan. X X X

Initiate Output on Chan. X X X

Initiate Output Reverse NO X X

Execute External Ins tructi on NO X X

Rename X X X

Store Designators NO X X

Load Designators NO X X

Store Tally Counter NO X X
Load Tally Counter NO X X

Halt X X X

Set Display Indicators X X X

No Operation (1 Byte) NO X X

Clear Display Indicators X X X

Load Storage Desc. Pointer X X X

Load Active Record 1 X X X

Load Active Record 2 X X X

Load Active Record 3 X X X
E-12

502B
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X,

X

X

X

X

X

X

X

X

X

X

X

X

X

OP Code
OCT MNE

*160 X
...J

·5· *162 RCK
t-t
<.!l *164 0 0
...J

*166 N

U
t-t
I-w
~
:t:
t- 041 AB t-t
0:::
c::(045 SB
>-
0::: 055 SLB c::(
Z
t-t
co

U
t-t
t-w
::E:
:t:
t- 043 A t-t
0:::
c::(047 S
...J

:E 053 AL
t-t
u 057 SL w
Cl

I 014 CP
c..!:} 015 CPR
Z
t-t 120 APR t-
t-t
Cl 121 APA W

...J 122 APE c::(
t-t
t- 130 EXV :z:
w
:::::> 131 EXP CY
W
V') 132 EX

133 EXA

Table E-3. Instruction Set and Processor Model
(continued)

Processor
~,

Ins tructi on 501A 502 502A
Exclusive OR NO X X

Longitudinal Redundancy Check NO X X

Logical OR NO X X

Logical AND NO X X

Add Binary X X X

Subtract Bi na ry X X X

Subtract Litera 1 Bi nary X X X

Add Decimal X X X
Subtract Decimal X X X
Add Literal Decimal X X X

Subtract Literal Decimal X X X

Compress Item~ Left Align~ Fi 11 X X X
Compress Item, Right Align, Fill X X X
Append, Right Eliminate X X X
Append, Advance X X X
Append, Left Eliminate X X X
Extract Variable, Fill X X X
Extract Previous Item X X X
Extract Item X X X
Extract, Item, Advance X X X

E-13

502B
X

X

X

X

X

X

X

X

X

X

X

X
X
X

X

X
X
X
X
X

OP Code
OCT MNE
113 GSI

t- 117 GCl
0-
:;:)
~ 154 SWS
~
w
t- 155 SIl z

157 Cll
174 1M
177 GIR

004 lC
014 SCE
015 SLE
020 MB

lLJ
...... 021 MlB :;:)
u
w 022 DB ><
W

-J 023 DlB
c::(
z 024 MD e:::
w
t- 025 MlD ><
lLJ

026 LD
027 OLD
030 BTD
031 DTB

034 SDR
035 SBR

Table E-3. Instruction Set and Processor Model
(continued)

Processor
Instruction 501A 502 502A

GOTO on Service Request NO X X

GOTO on Channel Interrupt NO X X

Swap States NO X X

Set Interrupt lockout NO X X

Clear Interrupt lockout NO X X

Interrupt Mask NO X X

Interrupt Return GOTO NO X X

Load Delta Clock NO NO NO
Store External Instruction Error NO NO X

Store Channel Parity Error NO NO X

Multiply Binary NO NO NO
Multiply literal Binary NO NO NO
Divide Binary NO NO NO
Di vi de Litera '1 B'j na ry NO NO NO
Mul ti ply Decima 1 NO NO NO
Multiply Literal Decimal NO NO NO
Divide Decimal NO NO NO
Divide Literal Decimal NO NO NO
Binary to Decimal NO NO NO
Decimal to Binary NO NO NO
Store Decimal Remainder NO NO NO
Store Binary Remainder NO NO NO

E-14

502B

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

APPENDIX F

OCTAL NOTATION RULES

Octal notation is a convenient shorthand method of \"/Y'iting pure binary numbers.
In programming it is used to represent such,binary values as memory addresses, I/O
control characters, constants, etc.

If a binary value is divided into groups of three bits, proceeding from right to
left, each group may be replaced by its octal equivalent as indicated in Table F-1.

Tab 1 e F-l~ Bi nary/Octal Equi va 1 en,ts

3-BIT BINARY OCTAL
GROUP EQUIVALENT

000 0

001 1
010 2

011 3
100 4

101 5

110 6'

111 7

Example 1: Example 2:
The binary value The binary value

011111000101001110 1010100111010

when di vi ded into three-bi t groups when di vi ded into three-bi t groups

011 111 000 101 001 110 1 010 100 111 010

~as an octal equivalent of has an octal equivalent of

37051 6 12472

OCTAL/DECIMAL CONVERSION PROCEDURE (See Table F-2)

Consider the decimal number to be converted as a base and an increment. Locate the
base (the next lower number which is evenly divisible by 200) in the margin of the
lower chart and the increment in the body of the upper chart. The intersection of
the row and column thus defined contains the high-order digits of the octal equiva
lent. The low-order digit appears in the margins of the upper chart opposite the

F-l

Table F-2. Decimal/Octal Conversion Table

DECIMAL INCREME~r
o::~

0 000 00. 016 Olf OU 040 04. 056 Ot.4 OU 010 0 .. 0 r-
wCJ 096 104 liZ 110 IZI 1)6 144 IU 1611 IU 176 1114 I'll 0 n 0 0- I 001 009 017 OH 0)) 041 049 051 06S 07)
0:: 0 081 on 09' 105 II) III 1Z9 1)1 145 IH 161 16'1 171 1115 1'1\ I ~ ~
O...J

2 002 010 01. 026 0)4 042 OSO OS. OU 074 OU 090 0'1' 106 114 III 1)0 .,8 146 1St 161 170 1111 186 1'14 1
".

6 r-
·c J 00) 011 019 on on 04) OSI os, OU 075 011) 0'11 0'1' 101 liS Il) III 119 147 ISS 16) 111 Il'l 117 I'IS J ~ J: ... 4 004 Oil 020 OZ. OJ6 044 OSl 060 061 076 084 092 100 108 116 124 III 140 148 156 164 III 110 I .. I 'I/, 4 ~ 0 00 5 005 Oil Oll 01' on 045 OS) 01 .. 01>9 077 085 0'1) 101 109 111 IlS I)) 141 149 57 11>5 17) 181 In 197 Gl f?1

...JO rtJ ~ ~ 6 006 014 OU 0)0 0)8 046 054 061 070 071 011(, 094 101 110 III 116 1)4 14Z ISO I S8 -mr-i74-- m--j90-jQa-
7 007 015 OU OJI 019 047 055 06) 071 079 017 o,S 10) III 11'1 117 1)5 14) 151 "i'ft in-,Yr-m--nr-r'li-

0000 0 I 2 J 4 5 6 7 10 II 12 Il 14 15 16 11 20 ZI zz l\ 24 Z5 ll> 11 10 0000
OlOO JI Jl U)4 n)6 H 40 41 42 4J 44 45 46 47 SO 51 52 5) 54 55 51> 51 60 61 OlOO
0400 61 6) 64 U U 61 70 11 7l U 74 7S 76 7'7 100 101 10l 10) 104 105 106 107 110 III 112 0400
0600 III 114 115 116 117 no 121 III III 124 115 126 117 1)0 III 131 III 134 IlS 116 1)7 140 141 142 14) 0600
0.00 144 145 146 147 ISO lSI UZ IS) 1S4 ISS lSI> 157 160 161 161 16) 164 165 161> 167 170 171 172 17) 114 0800

1000 175 111> 177 lOO lOI lOl 20) 204 lOS 206 201 210 til III 213 214 215 ll6 217 220 221 ZZZ ZZl ZZ4 ZZS 1000
1200 ZZI> Zll Z)O ZH Zll l)) 214 2)5 2)" Zl7 240 241 H2 l41 244 245 246 247 HO HI 2S2 2H 2\4 255 l56 IlOO
1400 ZS7 260 261 262 2") 264 265 266 261 270 271 272 21) 274 275 276 277 100)01)01)0\ l04)05)O/, \117 1400
1600 110 HI 112)I))14 115 lI6 117 no 321)U)2) ll4)is)26)l7))0 HI Hl))))}4 1)5 \16)n)41) 11>01)
1800 341 34Z 141 144 J4S 146 141)50 lSI)52)5))54)55)56)57)60)61)6l)6))64)1,5)1,6)61)70 111 IftO~

2000 H2·)7) l14 H5)11> 177 400 401 402 40) 404 405 406 407 410 411 412 413 414 415 416 417 420 42 I 4ZZ 2000
2200 42) 4lf 425 421> 427 4)0 4)1 4)2 433 434 4)5 436 4)7 440 441 442 441 444 445 446 447 450 451 452 45) 2100
2400 454 4S5 456 457 460 461 462 46) 464 465 461> 467 470 471 472 473 414 475 416 411 500 501 SOl 50) 504 2400
2600 50S 506 507 510 511 !ill SIl 514 515 516 511 520 521 52Z 5Zl S24 52S 526 527 5)0 5)1 532 !>)) 514 5lS 2600
zaoo 536 SJ7 540 541 542 54) 544 545 546 547 550 551 552 55) 554 555 S~6 551 560 561 56Z 56) 564 ~6S 566 l800

JOOO S67 570 571 S72 513 S14 57S 576 517 600 601· 602 i.0) .60>4 605 606 607 610 611 612 (1) 614 615 616 611 1000
)200 620 6Z1 6ZZ 6Z) 6Z4 625 626 621 630 6)1 632 633 634 635 636 6)1 640 641 64l 643 644 645 646 641 650 IlOO
)400 651 652 65) 654 655 656 651 660 661 662 66) 664 665 666 661 610 611 612 611 614 615 676 611 700 101 3400
)600 702 10) 104 705 706 107 110 711 . 712 71) 714 715 716 717 120 721 72i 72) 724 7lS 716 7Z7 7)0 131 732)1.00
)800 7)) 114 7)5 136 137 140 141 142 14) 744 74S 146 147 HO 751 152 75) 754 1S5 756 757 760 761 162 76) 1800

4000 764 71>5 766 167 110 771 71Z 713 114 175 771> 777 1000 1001 10·Ol 100) 1004 1005 1006 1007 1010 1011 1012 101) 1014 4000
4200 1015 1016 1011 10ZO 10Z I 1022 102) 1024 1025 1026 1027 10)0 10)1 lOll ro)) 1014 10lS 10)6 Ion 1040 1041 1042 1041 1044 104S 4200
4400 1046 1047 1050 1051 1052 105) 1054 lOSS 1056 1051 1060 1061 106Z 106) IOb4 1065 1066 1067 1070 1071 1012 107) 1074 107S 1076 4400
4600 1011 1100 1101 1102 110) 1104 1105 1106 1101 1110 1111 1112 III) 1114 1115 1116 1111 1120 liZ" Illl 1123 1124 1125 1126 1127 4600
4800 1110 I DI 1HZ II)) II)4 IllS 1136 1137 1140 1141 114Z 114) 1144 1145 1146 1147 1150 1151 II5Z IISJ 11 S4 1155 1156 II 57 1160 4ROO

5000 1161 1162 116) 1164 1165 1166 1167 IPO 111 I 117Z 1173 1174 1175 1176 1111 1200 1201 Il02 1203 1204 IZOS 1206 1207 1210 1211 5000
5100 1212 1Z1) 1214 IZI5 1216 1217 1220 12'21 IH2 Ill) 1224 1225 1226 1227 1230 12)1 1232 1233 1234 123S Ill6 1237 1240 1241 1242 ~loO

5400 1243 12H 1245 1246 1247 1250 1251 1252 12S3 1254 1255 1256 1257 1260 1261 1Z62 126) 1264 1265 1266 1161 1270 1271 1Z71 1273 5400
5600 1214 1275 1~16 1217 1)00 1301 1302 D03 1304 1305 n06 1)07' 1110 1311 1312 I) I) 1114 1315 1316 1317 1320 1321 1)22 Ill) 1114 51>00
~OO IlZS 1126 Il21 1))0 1331 IllZ 1333 1334 13)5 1)36 1))7 1340 1141 1142 1343 1344 134S 1346 1347 1350 IHI 13S2 'I)5) I)S4 11';5 ~ROO

6000 I lSI. 1)57 1360 1)61 1362 1363 1164 136S 1)66 1367 I no 1)71 1)72 137) 1374 1)75 1376 1)77 1400 1401 1402 140) 1404 1405 1406 /'000
6200 1401 1410 1411 1412 141) 1414 1415 1416 1417 1420 141.1 1HZ 142) 1424 1425 1426 1427 I HI) 1411 14ll 14n 14 \4 141S 1411. 14ll /,100
6400 1440 1441 1442 1443 1444 1445 1446 1447 l450 14~ I 14Sl 145 \ 14~4 1H5 14'>6 1451 141.>0 l4ld 14/,l 141, I 14~4 14/,5 14/'/' 141,7 1410 1,4(\0
61>00 1411 1412 1413 1414 1415 1476 1417 1500 I SOl 1502 150) 1504 1505 1506 1507 1510 1511 1512 1511 1514 151 ~ IS II. 1517 1520 I S21 I,/,M)

0 6100 15H 15H 1524 1525 1526 1521 15)0 1 S3 1 1532 15)) 1534 1535 15)6 1537 1540 1541 1542 154) 1544 154., 1546 1S47 1550 I S51 1 S52 MOO

Z '000
0

155) 1554 1555 1556 1551 1560 1561 1 5~Z 1563 1564 1565 1566. 1567 1510 1511 157Z 1573 1574 1575 1576 1577 1600 1601 160l 160) 7000 ,.,
W 1200 1604 1605 1606 1b07 1610 1611 1612 1613 1614 1615 1616 1617 1620 1621 /6ZZ 16l) 1624 1625 1626 1621 16)0 16ll 1632 16ll IbH 7200

(")

(f) -
< 1400 16)5 16)6 1637 1640 1641 1642 1643 1644 1645 1646 1641 1650 /651 1652 1(5) 1654 16S5 1656 1651 1/,60 IHI 1662 1/,6 \ 1664 161>~ 74no ~

In 71>00 11>66 1667 1670 1671 1672 1673 1674 1675 1676 1677 1700 1701 1702 1703 1704 1705 1706 1707 1710 1111 1712 1713 1714 171 ~ I7l6 7600 :a-
...J 7800 1711 1120 1121 1122 112) 1124 1125 1126 1727 1730 1131 1732 11)) 1134 11)5 1136 17)1 1140 1741 1742 1741 1744 1745 1746 1747 7Honl

r-

< [D

! 1000 1150 IlSl 1752 1753 1754 1155 1756 1157 1760 1161 1762 1163 111>4 1165 1766 1167 1770 1171 177Z 1773 1174 1715 1776 1777 2000 81)00 :a-
1100 2001 2002 200) 2004 2005 Z006 2007 ZOIO 2011 2012 201l 2014 2015 2016 2017 2020 2021 2022 202) 20Z4 2025 20Zb 2027 20)0 2031 8100 til

U
,.,

W 8400 Z032 20)3 2034 20B 2036 20)7 2040 Z041 2042 2043 2044 2045 2046 2047 2050 2051 2052 205) 2054 2055 2056 2057 2060 Z061 20bi 8400
0 8600 206) 2064 2065 2066 2067 2070 2011 2072 2013 20.74 2075 2016 Z071 2100 2101 2102 210·) 2104 2105 2106 2107 2110 2111 2112 2 II) 81>00 2

0
1800 2114 2115 2116 2117 2120 2121 2122 21Z3 2124 212S 2126 2121 2110 2 I) I. 2132 21)) 2134 2135 2 1)6 2137 2140 2141 2142 21H Z 144 8800

9000 2145 2146 2141 2150 2151 215Z 215) ZI54 ZI55 2156 2157 2160 2161 2162 216) 2164 2165 2166 2161 2170 2171 2112 2173 2174 217~ ~nl)O

9200 2116 2177 HOO 220 I H02 ZlO) H04 2205 2201. 2201 2210 2211 221 Z 2213 2114 Zll5 2216 UI7 2ZZ0 ZZZI ZZZZ ZZl} 2214 22H 2Zll> ~lOO

9400 22Z7 2230 2231 223Z 2233 2234 2235 22)6 2237 Z240 2141 2242 2Z4 3 2244 2245 2246 2247 2250 Z251 2252 225 J Zl54 2Z55 ZZ~b 22 S 7 '1400
'1600 lZ60 2261 2Z62 U61 ZZ64 2265 2266 2267 2210 2271 2272 227) 2214 22H 2216 2277 l)00 £30 I 2102 BO) 2)1)4 Zl05 2306 l}07 2 J I 0 ~hoO

9100 2311 2)12 2l1l 2314 2)15 2316 2)17 2120 2)21 2322 2lZ) 2324 2325 2326 2327 2)10 2331 Z '32 lH) 2314 Zn5 2 116 2 J \7 2 140 2 14 I ~ROO

10.000 2H2 234) 2144 2345 2346 Z147 2350 Z351 ZH2 2)5J 2354 Zl55 2356 2357 2)60 2361 2362 2)6) 2364 2)65 231>6 Zl67 2370Znl 2nl 10,000

10.200 2)7) 2)14 2315 2316 2)77 2400 2401 2402 240) 2404 2405 2406 2407 HIO 2411 2412 241) 2414 2415 2416 2417 H2O 2421 Hll 24l J 10. laO

10.400 2424 H25 2426 2421 H)O 2411 2H2 2433 2414 2435 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 Z4~4 10,400

10. bOO 2455 2456 2457 2460 H61 2462 246) 2464 2465 2466 2467 2470 2471 2H2 2473 2414 H75 2.76 2477 2500 2501 1502 2503 2504 2505 10, /'00

10.800 2506 lS07 2510 2511 2512 251) lSI4 2515 1516 2517 2520 H21 2522 2523 2524 252S 2526 2527 2S}0 2531 25J2 2533 2534 25}~ 2536 10.800

11.000 25)7 2540 2541 ZHZ 254) Z544 2545 254b 2541 2550 255 I 2S52 ISH 25S4 2SSS 2556 2557 H60 2S/,1 2562 2S6) 2564 2SH 256b 2%7 11,000

11.200 2570 2571 2512 2513 2574 2575 lS76 2577 Z600 2601 Z602 2bO) 21>04 2605 26062607261026112(12261) 2614 2/,IS 2bl6 2b 17 HZO 11.20n

11.400 2621 26Z2 2623 2&24 2625 2626 2627 Z6)0 Z6)1 2612 2633 2634 26)5 26)6 26)7 2b40 2641 ~642 2643 2644 264S 264b 2641 2650 26S1 11,400

11.600 2652 265) 21>54 2655 2656 21>57 2660 21>61 2662 266) 2664 2665 2666 2661 2670 2671 267Z 2673 2674 2675 2676 2611 2700 2701 2702 II, bOO

11.800 270) 2104 2705 2706 2101 2710 2711 Z112 211l 2714 2715 2716 2711 2720 2721 2722 272) Z724 2725 2726 2727 2730 Z1)1 2732 273) 11,800

12.000 2134 2735 27)6 2131 2740 2141 2142 Z143 2144 2745 2146 2147 2750 21.51 2752 2751 2154 2755 2756 2757 Z760 Z7b1 27b2 276) 276< 12,000

12.200 2765 l166 2167 2770 2711 277Z 277) 2774 2775 2176 2n1 3000 3001)002)003)004)005)006 1007 1010 lOll)012 301l)014)015 12, ZOO

Il.400)016)011 3020 3021)022 3023 3024 3025)026 3021 1030)031)032 3033 30)4 3035 3036 3037)040 3041 3042)04} J044)045 3046 12, 400

12.600 3041)050)051)05Z)05))054)055)056 3051)060)061 3062)06) 3064)Ob5)066)067 3010)071)on 1073)074)075 3076)/)77 Il, bOO

IZ.800 3100 3101 3102 3103 lI04)105 3106)107)110 3111) 11 2)11l)114 3115)116)111)120) 121 1122)123 1124)llS) 126)1 Z7)1)0 12,800

13.000 3 13 I)132 31)))114)1l5)I)6)131)140)141 3142)14))I 44 3145 3146)141 1I5~)151) I 52)I 51 3154 \ I ~~ " 56 II S7 11M) 161 11,001)

1).200)16l) 16))164 3165)166)167)170)111 3172)11))114)l7S 3176)177)l00 320 I)l02)l0))l04)20S l20f, 1207)210 3211 \212 11,200

13.400 321))214)215)216)217)220 3221)222)2Z))224)llS)U6 3227)2)0)lll 3Z31 lZ)) 3234)2)5 32 36 un 1240 3241)H2 320 11,400

11,600 3244)245 H4f>)241)250)lSI)lS2)25))254 1255)256 lZ57)260)2b 1 32b2 3263 3Z64)265 326b 3267 3270 1271 3272 327))l74 11. 61)0

1).800 3215)Z76 3277 3)00 }l01))02 330)))04))05 n06))01))10 H11)3IZ J) 13)) 14))15 331/'))17)120 lIll 'lU n21 H24 H2S I \, ROO

14.000))26))21)))0)))1 3HZ)))))))4)))5))3/0))37 3)40)141))42))4))344))45 3346 I147 llSI) 3151 11~2)lSI llH)}SS)}~6 14,ono

14.200))51 3360))61 3362 })6)))64))65)lb6))67 1370 3)71 3)72 IH3))74 1175 3176))77 1400 HOI 1402 140) 1404 140S HOI> 1401 14,2nn

14.400 1410 3411 3412 HIl 3414 3415 3416 3417)420 3421)422 Hl) 1424 3415 H26 14£7 34)0 l411 HI2 HI) \414 1415 HI/' 1417 1440 14. 41)1)

14.600 1441)H2 3443)444 3445 3446 3447)450)451 H52)4S) 34H H~5)4S6 JHl 14bO 341>1 3462 141,1 141,4 J4I,~ 141>/, 14/,7 147n 1471 14.I,Of)

14.800)47Z 3413)414 3415)476)417 1500)501)SOZ)50))504 \505 350b)507 3S 10 HII IS 12 3SI))514 Jq5 l~ I/' \.,17 \SlO \\/1 l\ll 14. R(\O

15.000 35Z) 1524)525 lS26 3527)5)0 lS)1)5)2)5H 3534)5)5)S)b)5)7)540)HI)HZ 3543)544)S4S 3H6 3547)5~0 HSI)552)5Sl 15.000

15.200)554 3555)s·S6 3551)S60 3561 3562)56) 3564)5b5)566)S67)570 3571)572)573 3574 3575 H7b)577 1600)bl) I)602)60))604 I~, 100

15.400)605 3606)607 3610)611)612 361) 3614)6 I 5 3b 16)b11)620 3b2 I)b21)62) 3b24)6B)626 3627)6)0)6)1)6 II l6)))634 16)S I~, 400

15.600 36)6 3bH 3640 3641)642)643 3644 3645)646)b47)6~0)651 3652)65) 3654 3655)H6 3651 3660)b61 16b2)61»)bb4)66~)6b6 I~, 600

15.800)667)670)611)612 3613)614)675 3676)671)700)101 3702)10))704)70S)106 3701)710)711)71 2 nil 3714)715 3716)717 15,800

16. 000 H2O 3721)122)723 3724 nzs 3726)121)130)1) I 37)2)7)))134 37)5 1716 37}7 3740 3741 17'2 1741 17H \745 \146 1747 IHO, 1".000

16.200 3751)752 375))1Sf 3755)156 3757)1bO)761 3162)76))764 3765 376/. 3761)170..1171)772 l1H 3774 177 ~ 1171o)777 4000 400 I Ib, lOO

11>.400 400l 400) 4004 4005 4006 4001 4010 4011 4012 401).014 401 S 4016 4011 4020 4021 4022 4023 4024 40H 4026 4027 40)0 4011 40ll Ib,400

HIGH-ORDER OCTAL DIGITS

F-2

increment. For example, to convert 7958 to octal, the base is 7800 and the incre
ment is 158. Locate 158 in the upper chart and read down this column to the 7800
row below. The high-order 0ctal result is 1742. Then read out to the margin of
the upper chart to obtain the low-order digit of 6. Append (do not add) this
~igit to 1742 for an octal equivalent of 17,426.

To convert an octal number to deciGal, locate the high-order digits in the body
of the lower chart and the low-orce l

" digit in the margin of the upper chart. Then
perform the converse of the above operation.

TRI-OCTAL NOTATION
In SYSTEM 2400 programming concepts, "tri-octal ll notation is used to describe the
contents of bytes. Tri-octal is simply a slight variation on octal notation (base
eight).

1. To describe in tri-octal notation the value of an eight-~it byte: the
first two bits are given an octal value between 0 and 3; the next three
bits are given an octal value between .0 and 7; the last three bits are
given an octal value between .0 and 7.

BITS:
'TRI-OCTAL:

o 1

o 1

1

23456 7

1 1 0 .0 1 .0
6 2

2. To describe the value of more than one byte, the area is first divided
into bytes; then each byte is divided as above. In tri-octal notation,
each group of three digits will describe eight bits (one byte).

,3. To convert decimal to tri-octal.

a. Write down the decimal number to be converted.
b. Write below it the value divided by two; ignore any remainder.
c. Write below this second value its IIhalf", as before, and con

tinue until the final value is 111".

d. In a column to the right of this column of numbers, write a "1"
beside each odd result, and a ".0" beside each even result.

e. The binary representation of the decimal number now appears as
this second column, with the Zeast significant bit at the top.

f. Group the binary representation into bytes, then translate into
tri-octal as above.

F-3

BINARY TRI-OCTAL
DECIMAL: 423 ODD 1

211 ODD 7

105 ODD
52 EVEN
26 EVEN 4

13 ODD
6 EVEN 2
3 ODD
1 ODD

1

o
a
1

o
1

1 1 (next byte)
FINAL RESULT: 423 decimal = 001-247 tri-octal

4. To convert tri-octa1 to decimal:
Values of each tri-octa1 column of a 2-byte number is shows:

BYTE 0 BYTE 1

DECIr"JAL VALUE 16384 2048 256 64 8 . 1

EXAMPLE: 1 0 3 2 7 6
16384 0 768 128 56 6

(lx16384) (Ox2048) (3x256)(2x64) (7x8) (6xl)
16384 + 0 + 768 + 128 + 56 + 6 = 17342 decimal

5. Notes about tri-octal:
a. Most operands in SYSTEM 2400 instructions used the first two bits

of the byte to refer to an lIactive r,ecord". In tri-octal notat-ion,
the first digit (of the three) describing the byte will be 110",111",
"2 1t

, or "3" - this is the "active record ll being used.
b. Numbers with a leading tri-octal digit of "211 of 113" are negative

binary values, and will be so treated by the binary arithmetic in
structions (ALB, SLB, AB, SB) and binary compare instructions (CB, T8S).

F-4

APPENDIX G

SNAP P ADAPTER

The SNAP P adapter is connected to DHA channel 2 and comprises two functions:

CAPTURE P

Capture P
Interrupt

Upon a command (via a Special Out Instruction), the Adapter captures the address of
the next instruction to be executed. The address is held by the Adapter until
called for by a Special In instruction. Interrupts are locked out by the Capture
P function and remain locked out until enabled by an Enable Interrupts command
(via Special Out instruction).

A Special In instruction causes the Adapter to transmit the saved address to the
specified item space.

Command Formats

OTS (Item 1), (Item 2)
where: Item 1 is a l-byte field equal to 002(8)

Item 2 is a l-byte field equal to 002(8)

INS (Item 1), (Item 2)
where: Item 1 ib a l-byte field equal to 002(8)

Item 2 is a 2-byte input field reserved for storage of the saved
address.

Programming Restrictions

Since the "Capture pIt function records the absolute value of the instruction fol
lowing the execution of the "Capture pIt request, each subroutine must subtract the
P-bias from the saved address and must add 3 to the result in order to return to
the calling program.

G-l

Example:
Jump - OTS

GOTO
Capture P
Exit to subroutine

Return from INS
Subroutine SB

ALB

Get saved address - Store at Exit +1
, .

Subtract 208, 218 (P Bias)
Plus 003

Exit GOTO (Saved address)

INTERRUPT

The interrupt package on the SYSTEM 2400 Processor resides on DMA Channel # 2 and
provides a facility for generating, sensing, and processing channel monitor and
service request interrupts. In addition to the eight channel interrupts) the
package is capable of accepting up to four auxilia~ external interrupt request
inputs. From a user1s (software) point of view, the package provides a means of:

• Linking to and returning from the interrupt routine .
• Enabling and disabling all or individual interrupts .
• Preserving the integrity of the worker program state by providing an alternate

set of Active Records (AR) locations and a means of saving the program de
signators.

• Capturing and identifying up to 16 major interrupting conditions.

Use of the Interrupt Feature

Before interrupts can be utilized, the program must link interrupt occurance to the
interrupt processing routine and establish interrupt lockouts so that only desired
interrupts are recognized.

Monitor interrupts are initialized when the channel active designator goes from the
active to inactive state; therefore, caution must be exercised in initializing
interrupts to clear any residual interrupts. This may be done by executing.

INS ITEM 1, ITEM 2

When ITEM 1 = DMA channel 2
and ITEM 2 = 5-byte status area

Linkage to the interrupt processing routine may be provided by a GOTD instruction

at location 248"

G-2

Interrupt lockouts may be estnblished by executing

OTS ITEM 1, ITEM 2

where ITEM 1 contains the Interrupt Adapter 10 and by convention is equal to
2. ITEM2 is a 3-byte item with the byte meaning as depicted in Figure G-1.

BYTE 1 BYTE 2 BYTE 3

Snap P Functions Chan. Interrupt
Lockout Interrupt Lockout

Figure G-l. O"TS. ITEM2, Three Bytes

Byte 1 assignments are as follows:

001 - Enable Interrupts or Remove Interrupt Lockout (RIL) - Interrupts are held
locked out for one instruction following the OTS and then disabled when in
the EXEC (interrupt) state.

002 - Capture P and lockout interrupts - Since the Capture P does not cause a
transfer of control by itself, it can be used as a programmable disable of
interrupts.

Figure G-10 provides a quick-reference data sheet for those who have SYSTEM 2400
experience.

Figure G-2 depicts byte 2 with a bit position lockout of the interrupts in byte 3
of the INS. A one (1) in memory sets the lockout; a zero (0) clears the lockout.

7 6 5 4 3 2 1 o

Ch3 CH2 CHl CHO CH3 Ch2 Chl ChO
\

"" " \. T I

Moni tor Channel
Interrupt Service
Lockouts Request

Lockouts

Figure G-2. OTS, ITEM2, Byte 2 Bit Assignments

Figure G-3 depicts byte 3 with a bit position lockout of the interrupts in byte 5
of the INS. A one (1) in ~emory sets the lockout; a zero (0) clears the lockout.

G-3

Figure G-3 depicts byte 3 with a bit position lockout of the interrupts in byte 5
of the INS. A one (1) in memory sets the lockout; a zero (0) clears the lockout.

7 6 5 4 3 2 ° , I ;' ·,1, ·1
' . ,I

Int Int Int Int' Int Int Int Int
7 6 5 4 3 2 1 °

Figure G-3. OTS" ITEM2, Byte'3 Bit Assignments

Interrupt Execution

Upon interrupt, the instruction at location 24S is executed. Further interrupts
are locked out until enabled with an 'OTS with RIL to the interrupt adapter.
Furthermore, a different set of Active Records (ARts) are used while in the inter
tupt routine. They are assigned to storage locations 040S to 057S~ The worker
state ARts (000-017S) are used immediately following the execution of the enable
interrupts.

To remove interrupt lockout, only byte 1 in Figure G-1 is required.

The event sequence for processing interrupts is shown in Figure G-S. The following
paragraphs describe the event sequence depicted in Figure G-S and in the order in
dexed (A through G) in the right margin.

A. link to interruot Proaram - This is generally a simple GOTO instruction.

B. Capture Return Address, Interrupt Status, and Program Designators - This is
accomplished with one Special In instruction as follows:

INS ITEM1, ITEM2

where ITEMl contains the Channel Number and by convention is equal to 2. ITEM2
is a 5-byte item with the byte meanings as depicted in Figure G-4.

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

Return Address Channel Interrupt Condition Interrupt Status Status Designators

Figure G-4. INS, ITEM2 Bytes

G-4

Figure G-5 provides a snapshot of channel interrupt status of each bit in byte 3
at the time of interrupt. The monitor interrupt status must be serviced or saved
following the snapshot. The channel service request interrupts will be cleared
when the generating source has been service.

I
7 6 5 4 3 2 ·1 0

.-
CH3 CH2 CHl CHO CH3 CH2 CHl ChO

" T -I " ~

Monitor Interrupts Channel Service
Requests

I

Figure G-S. INS, ITEM2, Byte 3 Bit Assignments

Fi gure G-6 bi ts show the s ta tus of the cond; ti on des i gna tors of byte 4 jus t pri or
to the interrupt. Only those conditions which are disturbed by the interrupt
routine and are important to the proper operation of the worker program need to
be restored.

7 6 5 4 3

I I I I I I
2 1

I I
o

I
1 Equal

ABN Edit
Greater

Arith Overflow
Arith Error
Memory Pari ty
I/O Pari ty

Figure G-6. INS, ITEM2, Byte 4 Bit Assignments

Figure G-7 depicts byte 5 of ITEM2 and the interrupt status bit assignment.

G-5

7 6 5 4 3 2 1 a
,I

Int Int Int Int Int Int Int Int
7 6 5 4 3 2 1 a

Figure G-7. INS~ ITEM2~ Byte 5. Bit Assignments

NOTE
This interrupt register is not ~~signed in the
SYSTEM 2400 Processors. It courd be used for Real
Time Clock or other such interrupt cohditions.'
These requests are cleared .when the generating
source has been serviced.

C. Determine Cause(s) o(J~J~tI.Y..RJ. ~ Th"is is accomplished by a sequence of TEST
MASK and GOTO ins truct', on pa'j rs.

D. Process Interr~pts - This is unique to the individual programs~ It may consist
of swapping buffers and initiating an I/O or~ on the other hand~ it may simply
involve setting a flag. If the interrupting condition requires ~ different
set of interrupt lockouts!O they mus t be es tab 1 i shed by the use of an OTS i n
struction to the interrupt package with ITEM2~ byte 1 conditioned to capture
P and disable interrupts~ and bytes 2 and 3 selecting the desired lockouts. If
no change to interrupt "lockouts is desired~ the OTS instruction is unnecessary.

E. Restore Condition Designators - This is accomplished by executing instructions
which cause the Condition Designators to be set to the state existing prior to
the interrupt. A sample restore designators routine is depicted i~ Figure G-9.
This routine restores all designators. A typical path taken through this
routine requires 232 usec. The worst case path requires 258 usec.

F. Enable Interrupts - This is accomplished by executing

OTS ITEM1, ITE ~ ~,:

where ITEMl contains the Interrupt Adapter 10 and by convention is equal to 2.
ITEM2 is a l-byte item equal to 1.

G. Return to Interrupted Program - This GOTO instruction must immediately follow
the Enable Interrupt to insure that interrupt return linkage is not lost.

G-6

Go To Interrupt Program

Capture Return. Address •
. Interrupt Status. and
Program Designators

Determine cause(s) of
Interrupt

.- - - - - - - - - - Process Interrupt

Restore Program Designators

Enable Interrupi]

Figure G-8. Interrupt Processing Sequence

G-7

A

B

c

o

E

F

G

ABED
ATEST

ARER

NOSET
GTEST

GREAT
SETG

M

SB
TM

SAVP~ EXOUT
EXOUT, BIAS, EXOUT
DSG, 002

GE ABED
EX ABUF, BYTEl
G ATEST
EX
TM
GNE
TM
GE
ALB
G

ALB
G

ALB
TM
GE
ML

ABUF, BYTE2
DSG, 060
NOSET
DSG, 040
ARER
ARITH1, RESULT, 177
GTEST
ARITH2, RESULT, 000
GTEST
ARITH1, RESULT, 000
DSG, 004
GREAT
RESULT! 200

G SETG
ML
TBS
TM

OTS
G

RESULT~ 000
RESULT
DSG, 001
ADP, ABLE
RETURN

Set up Return

Check ABN Edit

Clear ABN Edit

Set ABN Edit
Test for Arith Conditions
If None set, Jump, Else
Test for Arith Error
If Error, Jump, Else
Set Overflow
To Greater Test
Set Arith Error

Clear Arith Conditions
Test for Greater
Yes s Jump
Set Negative

Set Positive
Set (or Clear) Greater
Res tore Equa 1

Enable Interrupts

Figure G-9. A Sample Restore Designators Routine

G-8

Interrupt Adapter - 002
OTS Functions - 3 Bytes

BYTE 1 BYTE 2 BYTE 3

Capture P Functions Channel Interrupt
Lockout

Interrupt Lockout

t t
Locked Service Lockout Add on
Request Ch 0-3 in
Bits 0-3

Interrupts Bit 0-7

I
Lockout Monitors
Ch 0-3 in Bfts 4-7

Capture P and Disable Interrupts - 002
Enable Interrupts or RIL - 001
INS Status - 5 Bytes

BYTE 1 BYTE 2 BYTE 3
-

Return Address Return Address Channel Interrupt
Status

t
Service Request
CHO-3 in Bits 0-3

I
Monitor ChO-3
in Bits 4-7

BYTE 4

Condition
Designators

Same as GO
Instruction
except
greater than
in Bit 2

Figure G-10. Quick-Reference Data Sheet

Linkage

BYTE 5

Interrupt Status

Add on interrupt
Bits 0-7

On interrupt, go to 0248 and execute GOTO instruction. Interrupt set of AR's is
located at 0408 - 0578. Hence, AR's need not be saved or restored. A common P-Bias
is assumed. To return from the interrupt routine, simple Enable Interrupts to
again utilize worker AR set.

G-9

GENERAL

APPENDIX H

UTILITY ADAPTER

The SYSTEM 2400 Utility Adapter accornrnodatcs special input and output functions
which are not easily accomplishen in the Control Unit and enhances the prograrrmable
capabilities of the 2400 Process('rs. It is configured to be on DMA Channel No.1
(thereafter reFer-red to as Adapter Channel No.1 ("101 8) and is accessed via Special
In (INS) ~nd Special Out (OTS) instruction·s.

The utility adapt~r comprises several of the Processor's complement of logic modules.
A 1 though the adapter is a standard ha rd-wi red f(~ature of the Processor, its oper
ator/function is str'ictly und2r pr'ogram control. Operationally, it is implemented
to accommodate special programmable functions and parameters that will vary from
system to system.

Due to the ndapt(:i-'S inherent v-1riab·I~} programmables and requirements, the SYSTEM
2~OO ~nhaVlk D.~ to' Lungua ge d025 no t i:~tC 1 ude the software docum~~nta ti on normally
ufforede vJith i:h(; 2Jtandard system ~~C)ft\,.jaje. However', telated documentation is pro
vi ded \.Ji th'j n thi s manua 1 and SYSTE}1 24-00 P~{'oceS30r Pl"1ogrCJJ111Tling in Maahine Code

(Form No. M-2269).

The Uti 1 i ty Adapter prov; des tho fo 1'1 owi ng programmable functi ons:

• Logi ca 1 ins tructi ons
• CRC Calculations
• Rea 1 T-i mc Clock capabi 1 i ty

These functions are controlled via the Special In and Special Out instructions. The
formats utilized by the instructions are as follows:

Special Out

OTS (Item 1), (Item 2)

where: Item 1 is equal to (001) which ;s the DMA address of the Utility
Adapter.
Item 2 ;s a multi-byte field comprising one command byte and X data
bytes. The command byte is the first byte of the field and ;s further
described under "Command Codes."
The data field' can be from 1 to 255 bytes and is operated on by Utility

Adapter byte-ser i 31 as dAfined by the command code.

If more than 255 bytes of data are to be transferred to the Adapter or if the data
is to be transmitted with more than one Special Out instruction for a single oper
ation, the Command code of all subsequent Special Out instructions must have the 26
bit set. This conditions the Adaptei to save the result of the computation and
proceed with the operation using the saved result.

Special In

Format:
INS (Item 1), (Item 2)
where: Item 1 is equal to' (001) which is the DMA address of the Utility

Adapter. Item 2 describes a receiving field for information from the
Uti 1 i ty Adapter.

The purpose of the input function is to input the result of the computation from
the Logical and CRC feature.

Upon being initiated by a Special In instruction, the Adapter will, respond with up
to two bytes.

If the program wishes only the results of the Logical Set, one byte is enough~ while
two bytes are required for the result of the CRC as shown below:

Contain the result {
of a CRC function

COMMAND CODES

Contains the result

t--___ l_s_t_b_y_t_e_. ___ --II } of a LRC or AND

2nd byte . or OR function

The command codes used in the instructions to direct the Utility Adapter to perform
a specific function contain two modifier bits t as shown below:

Byte
Command Code 7 6 5 I 4 I 3 I 2 I 1 I 0 I

Command Codc; t;·, t ".,
-- .

1 = Save-Module-Accumulator Bit

o = Enable Utility Adapter

H-2

Utility adapter commands are:

X01 8 - Exclusive tlOR"/LRC }
X028 - Logical "AND" logical Set
X04

S
- Inclusive "0R" ______________ _

X10S - 16-Bit CRC } CRC Set
040

8
- k2-Bit CRC _____0-________ _

0508 - Load Utility Adapter

Command byte modifiers are:

Bit 27 - 0-Enable Utility Adapter
Bit 26 - k-Save Accumulator
060S - Clear Real Time Clock (RTC)

LOGICAL SET FEATURE

The Logical Set Feature consists of the OR (exclusive). AND, plus OR (inclusive)
functions.

A. OR (exclusive)
The primary requirement for this function ;s to compute the Longitudinal
Redundancy Check (LRC) character for a string of data characters.

The Adapter will accept a string of characters and compute the LRC character.

B. AND
The Adapter will logically AND two bytes of data.

c. OR (inclusive)
The Adapter will logically OR two bytes of data.

Logical Instructions

To execute Logical Instructions. perform the following:

OTS ' Item 1, Item 2
INS Item 1, Item 3

where, Item 1 is numerically equal to 1 (adapter channel number), Item 2 contains
the logical command byte followed by the data to be operate~ upon, and Item 3 is a
l-or 2-byte item where the results will be placed.

H-3

The command byte must be the first byte of Item 2 and equal to one of the following:

001 or 101 - EXCLUSIVE OR
002 or 102 - AND }

}

------- Generate l-byte resul t
004 or 104 - INCLUSIVE OR
010 or 110 - CRC (16 bit)
040 or 140 - CRC (12 bit)

---..:..--- Generate 2·-byte resul t

In each case, the first command type (e.g., 001) operates only on the bytes of
Item 2; the second command type (e.g., 101) utilizes the prior result a.s well as
all bytes of Item 2.

In each case, the logical operator applies sequentially to all bytes of Item 2
following the command byte.

Examples of each logical operation are given below for two data bytes. .Theprocess
is accumulative for items with more than two data bytes.

Exclusive OR/LRC
Command Code:

Example:
01100101
01001100
00101001

Logical AND
Command Code:

Example:
01100101
01001100
01000100

Inclusive OR
Command Code:

Example:
01100101
01001100
01101101

Fi rs t data byte
Second data byte
Resul ts

Fi rs t data byte
Second data byte
Results

Fi rs t da ta byte
Second data byte
Resul ts

H-4

CRC SET

The CRC Feature is a ~/cl;c B.edundancy fheck. There are two types. CRC-16 and

CRC-12.

The adapter will accept a string of data characters and compute the CRee The eRe
result is two bytes in length.

Cycl.; c Redundancy Check (CRe)

The Utility Adapter performs cyclic redundancy checks.
The following tv/O checking polynominals are implemented.

l2-Bit CRe - X12+Xll+ ... +X3+X2+X+l
16-Bit eRe - x16+xlS+ ... +x2+X+l

Results of the checking operation are contained in two bytes. Examples for both
checking operations are given below:

16-Bit eRe
Comm·:;.nd rode:

C<ample:

0000011'1

00000011 .

0; OOJO 1 :)

00110001

12-Bit CRC
Command Code:

Example:

--These

~OO1l1
XX 001111

First datd byte
Second data byte

Results -

Mas t ~d grl"i f-j can t byt~~;

bits are ignored by the Tility Adapter

First data byte
Second data byte

Resu1 ts -

00 011010 Least significant byte
00 100001 Most significant byte

_I ~I--- These bits are always zeros
H-5

LOAD UTILITY ADAPTER

A "preset" value may be sent to the adapter with a Load Adapter (050) command byte.
Example:

OTS ITEM 1, ITEM 2

Where Item 1 is numerically equal to one and Item 2 is

050 xxx YYY

where XXX YYY represents the 2-byte preset value to be loaded into the adapter.
Two bytes should always be loaded. Byte XXX is loaded into the adapter register
associated with one byte logical results (which is also used for the most signifi
cant byte for CRC). Byte YYY is loaded into the adapter register used for the
least significant byte of CRC.

COMMAND BYTE MODIFIERS(X)

Save Module Accumulator Bit (26)

This bit directs the Utility Adapter to save the contents of the accumulator.
This feature permits logical operations on strings of data characters in excess of
255 bytes (the maximum number of data bytes transferred with a single instruction
;s 256 with the first byte being the command code) or on a group of single bytes
or s tri n gs of bytes 1 oca ted in di ffe rent pa rts of memory. Fa r example) an LRC
operation on a string of data characters greater than 255 bytes would require that
bit 26 be set to a "111 in all subsequent instructions conveying data during this
operations. In addition, the contents of the module accumulator may be stored in
main memory using the Store Module Accumulator instruction and may be returned to
the accumulator in the Utility Adapter using the Enter Module Accumulator instruc
tion, thus allowing more than one subroutine in the main program to utilize the
features of the Utility Adapter.

Enable Utility Adapter Bit (27)

Bit 27 set to a "0" in a command code enables the Utility Adapter and informs the
other connected peripheral to deselect.

REAL TIME CLOCK

The RTC consists of a l6-binary counter, free running oscillator, and adapter
channel control logic. The.16-bit counter is incremented by the oscillator

H-6

frequency of 256HZ+ 2.5HZ. Each time the counter is incremented, the RTC makes a
memory cycle request to til>; Processor. When the request is granted, the most

significant eight bits are stored in memory location 0028, and the least signifi

cant .. :j':~ bits ilre stored in locatiCJrl G2'\r
Clear Real Time Clock Command (0608)

This command presets the c'lock to 3 value of 000 000
8

• Sending this command to the

Utility J\dapter V;(l the Special ·:;':t instruction forces the 16-bit counter in the

Adapter to be cleared t which in turn clears memory locations 0228 and 0238•

Command Format

OTS (Item 1), (Item 2)
where: Item 1 'is a l-byte field with a value of 001

8
•

Item 2 is a l··byte f'ield \··,ith a value of 0608•

(Utility Adapter Cc-i;imand Code).

The Rea'j Time Clock loads '~lddrecsi:~~::. :2?o dr.d 238 by stealing memory cycles. It is
u

possible for the RTC to 'ir1(:t2::12n1: -~}~i:: cuunt in the middle of a program instruction

\'Ihich is manipulating addresses 228 dnG 2:3
8

, ~lhen the program is utilizing both

bytes of the RTC) it !nUS t take precau ti ons to insure that thi s has not occurred

(i.e., that the 16-bit count does not consist of one incremented byte and one non

i ncremen ted byte.)

The RTC counts from 0000008 to 3773778. When the count becomes all ones, the

counter automatically "vJraps back around" to 0000008" No overflow indication is

set.

The RTC esci 11 a tor runs asynchronous re 1 a. ti ve to the Processor .. Execut; on of the

clear RTC command does not cause the oscillatot to be reset. It is possible,

therefore, for the RTC to increment addtess 023 from OOOg to 0018 between a clear

command and any instruction testing adc]('css 023 for zero.

H-7

I
I
I
I

• • •

------ .,._-----------_._ ... _--------
Machine Code and Ass~mb1~Langua~~ - Edition 2

Form No. PM-1948

--------.

'Please restrict remarks to the publication itself, gl\ltng specific page and line references with your comments
when appropriate. This form will be sent to 'the pubitcation's author for appropriate action. All comments and
suggestions become the property of MDS.

Requests for system assistance or publications should be directed to your MDS representative or to the MDS
Branch Office serving your area.

ER RORS NOTED:

: SUGGESTIONS FOR IMPROVEMENT:

• I

I

• I
••
• • I
• • • • · .

• I

• ,
I

How do you use this docum~nt?

DAs an operator's Reference Manual

DAs an introduction to the subject

DAs an aid to instruction in a class

o As a student text book

o For advanced knowledge of subject

Your Name

Occupation

Company

Address
Street

Form 1'10, iVi-1459-0873

Do you wish a reply? .

Dyes
DNo

Date ______ __ _

City State Zip Code

THE THROUGHPUT SPECIALISTS

MOHAWK DATA
SCI ENe ESC 0 R P.

PALISADE STREET HER KIM E R. NEW Y 0 R K 133 5 0

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	replyA
	xBack

